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(i)

(ii)

Summary of Progress

Work has proceeded according to schedule on all research topics.

Uniquely well defined clusters of Gold are now available for
optical measurements.

A comprehensive experimental investigation has been carried
out to determine the non-linearity of these samples on a
femtosecond timescale. These results are presented below and

prove that:

(@)  the nonlinear refractive index rises and relaxes on a
sub-picosecond timescale.

(b)  the nonlinearity is predominant positive imaginary originating
from a hot electron contribution.

(c)  the nonlinearity is independent of the size of the particle.

Staffing

No major changes in staffing have taken place.




CHAPTER |

INTRODUCTION

‘The interaction of light with mater is usually characterised by sceveral
phenomena, such as light absorption, refracuon, scattering cte. All of these are
regarded as lincar optical propertics of the material. dependent on wavelength but
independent of the intensity ot the light. However, if the illumination is made
sufficiently intense, the opucal properues begin o depend on the iniensity and other
characteristics of the light. The light waves may then interact with each other as well as
with the medium. The study of such interactions is the field of noniinear optics. It is a
field that has experienced a rapid growth of interest. There are three main motivations
for this. First, there is the possibility of exploiting the nonlinear behaviour in vanous
devices. The most important of these are frequency converters, in which laser radiation
at one frequency is converted into cohercnt radiation at a new frequency, by, for
example, harmonic generation, sum-frequency generation cte.(1) Because the converted
radiation may be at a frequency that is not directly available from a laser source, these
frequency conversion techniques provide an important means of extending the spectral
range covered by coherent sources. A second reason for studying nonlinear optical
processes is that they set a limit to the light flux that can be passed through a medium.
For cxample, two photon absorption can lead o depletion of the incident light and self-
focusing lcads to distortion of the incident beam profile. A third interest in nonlincar
optical effects lies in their use as a means of obtaining information about the
microscopic propertes of the atoms of molecules that constitute the nonliner medium. .
Two photon absorption, for example, can be used to study energy levels that are

inaccessible by single photon absorption.

When an electric field is incident on a conductor consisting of negatively and
positively charged particles, it gives rise to a flow of current - the positive charges
move in the direction of the field while the negative ones move in the opposite
direction. In the case of dielectric's, on the other hand, the charged particles are not free
to move but are bound together. The effect of an electric ficld on such materials is 0
induce a polarisation that is proportional to the applied ficld. However, as the intensity
of the ficld is increased the linear dependence of the two terms no longer holds. The
polarisation must now be expressed as a power scries in the tield. as tollows :

P=g,(xVE+yPE + y'E’+...) an




Where, x Fancar suscepubility, and
7', ... = Nonlincar susceptibilitics.

The nonlinear susceptibility 1s & tensor object and retlects the symmetry ot the

matenal. For a crystal with inversion symmeltry. 1.¢. one that is centrosymmetric, the

14y (&)

second term and higher even erms, ¥, 7' cte., are zero. However ' is always

non z¢eroQ.

AL first crystalline nonlincar media were seen o offer the greatest device
potential. The reason for this lay in the fact that 7% is zero unless the medium lacks a
centre of symmetry. Nonlincar effects in centrosymmetric media would thus depend on
higher-order and therefore presumably smaller nonlinear terms. Unfortunately,
however, fcw crystalline materials have proved capable of sauisfying the list of
requirements for a good nonlinear material. A number of significant advantages are
offered by liquids and gases. They can be casily prepared. with good optical quality
over large dimensions. Also, they arc less prone to suffer irreversible damage at high

intensitces.

In order for nonlinear behaviour to manifest itself, the field incident on the
material must be comparable to the intemal field E, which binds togcther its electrons

and ions; typically E, =3x10"°Vm™. To obtain an optical ficld of such a magnitude.

an incident intensity of =10"Wem™ is required. However, such high intensities are
not in fact necessary for the observation of many nonlincar-optical effects. One reason
is that, provided the assembly of induced dipoles oscillates coherently, the field that
they radiate individually can, in certain circumstances, add together constructively to

produce a much larger total intensity. This phenomenon is termed "phase matching”.

The intensity required to observe some nonlinear processes can be further
reduced by many orders of magnitude by choosing one or more of the optical
frequencies involved so that they lie close to a resonant frequency of the oscillating
dipoles; this is termed "resonance enhancement”. In nonlinear optics resonant
enhancement is utilised in two ways : Firstly, it allows nonlincar processes and devices
to operatc cffectively at lower power levels, thus increasing their range of use and
cfficicncy. Sccondly, resonant nonlinear phenomena provide the basis for "nonlinear
spectroscopy”; the observation of these cffect can provide information about the
structure of matter that is not accessible using conventional lincar optical spectroscopy.

In vrder to be useful in an optoclectronic device, a material requires a large

nonlincar susceptibility along with a fast response time. The aim of this study is to
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determine what propertes of a material come o play i the enhancement ot these

parameters.

THE SUSCEPTIBILITY TENSOR

By considering the dynamic behaviour of charged particles in a medium under
the influence of an electric ficld. it 1s possible o denve explicit formulae for the
susceptibility tensors of the medium. For simplicity it is assumed that the medium
consists of an assembly of microscopic polarizable units which are independent and
non interacting. Thus local field factors are neglected. Local field corrections can be

introduced later without altering the general formulc

A straightforward denvation. using the density matrix approach lcads to the
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following formula for the third order susceptibility tensor ¥, that depends on the

frequencies @,, ., and @, of the three electric ficlds involved

Koy =00 01, 0;,0,) = §3.poa)
‘,3f re

uoa By
Faslocleal ga N

('Qba -0~ W, - W, )(-Qca — W, =y )(Qda - w:)j

U ﬂ a fi u
abrl/r cd zm rahrbrrrdrda

+
(Q,, + 0,)(R2, -0, - o, )(QM ) (R + 0,2, +0,+0,) (2, -w,)

a f vy u
rd')’br cd” da (1 ,))

' (Qba + O, )(Qca + 0, + o, )(Q:la tw tw, + ws)

Where u, «, 8, y are summed over the co-ordinates x, y and z,

@, = o, + 0, + w,, where w,, @,, and w, are the frequencies of the applied ficlds,
the operator § implics intrinsic permutation symmetry,

N is the number density of molecules, i.c. the number of molecules/unit volume,

er”, is the (ab) element of the dipole moment matrix er”, and

E, -E . L
Q, = —374’ is the wansition frequency.




This expression has smgularities o the frequencey domam whenever any one of
the trequency denominators ol the type £2 = @ approaches zero. Thus the susceptibility
may be "resonantly enhanced” by choosing one or more of the incident frequencices, or
combinations of them, to coincide with an optical transition frequency of the medium.
Obviously, as 1s apparent from the above formula. for the largest nonlincar
susceptibilitics we require large values for the matnx clements of the electric-dipole

operator er and small frequency denominators.

The use of resonance’s to enhance a specific susceptibility otten has the effect
of simtlarly enhancing other competing or undesirable processes. For example, by
allowing an input frequency to approach resonance with a single-photon molecular
transition, that input ficld may suffer a corresponding increase in absorption; this
occurs because the first-order susceptibility ¥ is also enhanced.

For very close resonance, the mathematical divergence's in the above formula
arc unphysical: they occur only because higher order nonlincaritics have been
neglected. When excited very close to resonant transttions, the molecules undergo large
perturbations - thus invalidating the small-perturbation approximations - and the
transition frequencics which occur in the denominator terms become ficld-dependent
themselves. When these strong ficld dependent perturbations, or level shifts, are taken
into account, the resulting induced polarisation remains finite. In many cases, however,
the resonant nonlincaritics are dominated by various transition-line broadening
processes, perhaps duc to interactions between the molecules, which also ensure that
the resonant susceptibilitics do not diverge. A particular resonant process can then be
represented by a single order of nonlinearity derived using the small-perurbation
analysis, but with the addituon of appropriate damping terms £iI” in the frequency
denominators of the susceptibilities as tor example (£2,, +il,, - w,). The damping
factor I',, is thus identificd as a dephasing parameter appropriate to weak collisions,
and as such represents a spectral linewidth for the transition of frequency £,,. The
smallest values which the damping factors I” can take are determined by spontaneous
emission, and in this casc I,,”" is a natural lifetime in the absence of collisions and

other perturbations.

Thus when damping terms are inserted into the expression for the general third-
order susceptibility, the following expression is obtained :
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Clearly, if the frequency which appears in a particular denominator term is far
removed from molecular resonance's, then the corresponding damping term can bhe

sately neglected.

A price paid for the resonant enhancement of optical nonlinearity is the slowing-
down of the speed of response, which may be a serious limitation for some applications

such as optical switching and signal processing.

The work done for this thesis is based on the measurement of the resonantly
enhanced nonlincar susceptibility, ¥ of colloidal gold solutions. with the diameters
of the gold particles varying from 50-400A. The reason for interest in these materials
lies in the fact that the properties of the inclusions arc completely different from bulk
gold because of their small dimensions. This results in two confinement effects,
quantum confinement and diclectric confinement, which both have potenual in
cnhancing the macroscopic susceptibility of the solution and are also in themselves very
interesting phenomena to study. In chapter 2 the matcrials are described in more detail
and the confinement effects mentioned here are elaborated upon. Chapters 3,4, Sand 6
describe different experimental techniques that were used to study the materials and in
particular to mcasure their susceptibility and responsc times. Chapter 7 gives the final
conclusions of this study based on, both, the results obtained here and findings in the

extensive literature on this topic.
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CHAPTIER 2
THE OPTICAL PROPERTIES OIF ARTIFICIAL. MATERIALS

In the carly davs of nonhinear opucs. the materials used for experiments and
devices were mainly morgame diclectric crystals, vapours, liquids and bulk
semiconductors. More recentlyv, interest has been focused on new artificial solid state
materials which offer higher nonhneanty. and in particular, those that allow nonhnear
optical deviees o operate etficiently at refatuvely low power levels. Several matenals
with large second-order nonhinedrity have been successtully fabricated (D These have
applications in devices such as compact optical-frequency doublers and parametne
amplificrs and oscillators. However, matenals with large third -order nonlincarity are ot
greater interest currently, since the nonlinear refracuve-index etfect can be exploited tor
switching, optical bistability, phase conjugation and other types of signal processing'=).
A lot of advances have been made, of late, in the synthests of organic matenals,
inorganic semiconductors and metallic clusters and particles with a large third order
nonlincarnity. The emphasis of this study 15 on composite materials composed of small
metallic particles embedded 1n a dielectric matrix. A composite medium is made of (at
least) two different component media, but it is not an alloy as they are not mixed at the

atomic level.

The linear optical propertics of metal colloids, consisting of metal particles
suspended in a dielectric matrix have been studied for a long time.3: 4) The first models
aimiug at descrihing these properties were developed at the wrn of the century - ©)
However, it was not unul the 1980's that these materials were studies as nonhinear
optical materials.(7- 8) Subsequently a lot of work has gone into investigating them. The
discovery that they exhibit a relauvely large pand-edge resonant third-order nonlincanty
with relaxation umes as short as Sps has sumulated much of the current investigation
10. 1112, 13), The linear dimensions of the conducting particles in these composite
materials are of the order of a few nanometers and the carriers in them are contined in
all three directions. It is thercfore customary to refer to them as quantum dots or zero

dimensional structures ¢!4). This term is appropriatc only when the dimensions of the

confincment arc smaller than the mean free path of the carriers. Then the description of

the optical behaviour involves the encrgy cigenvalues and eigenfunctions resulting tfrom

the carrier confinement.

N
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2.1 MATERIAL PREPARATION

The materials used in this study consisted of colloidal suspensions ot different
stzed gold panticies in deomsed water. The diameters of the gold particles ranged from
50-400A. The sols are labelled C(S0A), K(172A), M(392A). N(395A). 365/,
P(S2A). Q(47A). R(326A). Y(179A). Z(164A) and S(184A). Sols K. MUN O R Y

and Z were prepared according to the method of Frens 45 - reduction of chloroauric

acid solution by Sodium citrate. which (when successtul) produces possibly the most
monodisperse form of divided metal known in the colloidal size regime. 1) Sols P and
Q were synthesised by atkaline wetrakis (hvdromethyl) phosphonium chlonde reduction
of chloroauric acid.(17) All the hydrosols-were additionally concentrated by remaval of
the solvent (water) before measurement of the nonlinear optical properties. For sols P
and Q. soduim citratec was added and the sols boiled for 15 minutes before
concentration. For all the sols, PVP,,, was added. to a concentration of about 2 ¢/mM
o' metal atoms, before boiling down using a hot plate. either in a stream of nitrogen or

air.

All the chemicals used were analytical reagent grade, except tetrakis
(hydromethyl) phosphonium chloride which was only a general purpose reagent
(Fluka). Chloroauric acid was used as obtained from Johnson Matthey and contained
49.47% meial, by weight. Poly(N-vinyl-2-pyrrolidone) at 40,000 molccular weight
(PVP,,) and at 10.000 (PVP, ) were used. as supplied by Polysciences inc.. All
water used as the dispersion medium of the sols was distilled twice. latterly from an all-

glass apparatus.
2.2 MATERIAL CHARACTERISATION

The materials were charactensed using Transmission Electron Microscopy
(TEM), linear UV-Visiblc absorption spectroscopy and a range of nonlinear optical
techniques. The following two subsections describe the lincar charactenisation methods,
i.e. TEM and UV-Visible absorption spectroscopy.

2.2.1 TRANSMISSION ELECTRON MICROSCOPY :

Transmission electron microscopy i1s an extremely useful technique for
determining the size and shape of nanometric particles and is particularly attractive in
this case because of the high contrast afforded by the interface between the gold
inclustons and the surrounding water. Transmission clectron microscopy was

performed using an Hitachi H7000 transmission electron microscope operating at 100




EA aeecicration voltage. Sl volumes op the concentiated sols were diluted o amenad
concentranon ol about |- 2 mM with doubly disulled water and a drop of cach placed
tor several seconds in conteet with a thin non-pertorated carbon film supported on a
LOS mm ocopper grid. The pardcele profiles were mcasured according o their
“equivalent arele diameter”. and the resulting distributions o diameters assessed for
their means and coctficients of variaton (standard devisuon of the distribution
eapressed as a pereentage tracuon of e meant. Untortunately, there are certnn errors

with electron microscopy that are hard o esumate

iy inaccurate magnificauon by the microscope.
m Sampling error.,
i) Artetact of size introduced by imaging conditions (extent of defocus. size of

ohrecuve. apertures ctc.) and

v Measuring inaccuracies (particularly induced by estimating equivalent cirele

diameters of asphencal partcles).

5% 1s a rcasonable value for the error in the absolute value of <d> (average diameter)
for monodisperse sols. Since most of the crrors above are systematic (apart form
sampling crrors and inhomogeneitics which can be partially estimated by examining
different micrographs and are less for monodisperse sols), comparisons between one

soland another still hold. For polydisperse sols the ahsolute error is greater.

Figures 2.1 a-¢ show typical micrographs obtained. As is evident, the size
distrtbution of the particles 15 very narrow and thev can be considered o be spherical o
a high degree of accuracy. Micrographs taken of the same samples over a year later
showed that they were free of aggregates and had the same charactensucs as the freshly

prepared sols.
2.2.2 UV-VISIBLE ABSORPTION SPECTROSCOPY :

[JV-Vistble absorption spectroscopy is a standard technigque for obtaining the
cnergices of interband, intraband and other transitions in materials. Literally 100's of
papers have been published on the lincar optical properties ot small metal particles. Sce.
tor example references 3 and 4. The following section discusses, therefore, only briefly

the yeneral features of the lincar absorbance spectrum of colloidal gold.

Llectric dipole absorption in Gold composite materials results in a peak in the

visthle part of the absorption spectrum. called the "surtace plasmon resonance” peak.
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Fhe absorpuon s due o a collecuve elecuron plasma oscillation ¢ plasmon o that o
coupled w an external ransverse electromagnetic ficld through the particle surtace (1S
The plasmon consists of the conduction clectrons of the metal and can be classically
deseribed as a spherically bounded free clectron wave that 1s damped. The UV light
absorbed by Silver and Gold particles, on the other hand. is due o interband
transitions. and is quite distinct from intraband excitation of the plasmon resonance in
the visible. The fact that this free clectron part of the optical response is distinet from
the bound clectron and/or interband contribution and occurs in the visible, is why these

colloids ¢xhibit such strong colours.

Depending upon the size of the inclusions. two difterent theories are used to
explain the linear absorption spectra of the composite matenals. The (irst of the two, the
quasi-static or dipole approximation approach is valid when the size of the particle 1s
much smaller than the wavelength of light incident on it. This reduces the problem o
that of a paniicles immersed 1n a uniform, but time dependent. field. Thus retardation
can be neglected, and only dipole modes need to be considered. The quasi-static

approximaton is reasonable for particles with dimensions < 30nm for A = 530nm.

Within this approximation, fcatures of the absorption spectrum, such as
position and width of the surface plasmon pcak arc size independent. There ts.
however, a theory that the dielectric function of a small metal sphere is dependent upon
its sizc. This functon is based on a classical model of a reduced clectron mean free path
or a quantum-mechanical model that leads to discrete electron cnergy levels. Both
viewpoints predict that the imaginary part of the diclectric function will increase with
decreasing particle size, leading to a broadening of the surface-plasmon width for
smaller particles. The quantum mechanical model also predicts a slight blue shift in the

peak position of the plasmon resonance with decreasing particle size.

When the size of the inclusions becomes larger, retardation effects have to be
included. At this stage the "Mic theory” (9 is used to cxplain the various features of the
absorption spectrum. According to the Mic theory, the plasmon resonance broadens
ar.d the peak position red shifts with increasing particle sizes - similar to the quantum
mechanical predictions for small particies. The theory derives from a solution of
Maxwell's cquations, with boundary conditions defined such that the clectric and
magnctic ficlds just outside the sphere are the same as those just inside | ‘e, the
radiation must be continuous across the sphere boundarics. Using these boundary
conditions. it is possible to come up with an cxpression relating the absorption

coctticient. «. to the wavelength of the exciting radiation. It is given by,
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where €, and ¢, are the real and imaginary parts of the diclectric constant of the
inclustons, p is their volume fracton and ¢, 1s the ¢ purely real ) diclectric constant of

the host diclectne.

Figures 2.2 and 2.3 show the lincar absorbance spectrum of some ol the gold

colloidal samples in a spectrophotometer cell of path length T mm.
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Figure 2.2 : .inear absorbance spectrum of two similarly sized gold colloids
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Figure 2.3 Lincar absorbance spectruin of two gold colloids of completety
ditferent sizes

As is evident from the figures, it is difficult to come to any definite conclusion
regarding the relationship between particle size and width of the absorption band and
peak position of the plasmon resonance. It is probable that the discrepancies are at least
partially duc to the fact that most theoretical models are basced on idealiscd samples i.e.
an assembly of non-interacting sphercs of the same size. In reality, of course, this is
not the case. Unlike silver particles which have a sharp surface-plasmon resonance, the
resonance in gold is broad because of the relatively large bulk value of the imaginary
part of the dielectric function, €, .(19) In addition, there is the onset of an interband
transition in gold necar the plasmon resonance that leads to large absorption in the blue
wing of the absorbance spectrum. The distribution of particle sizes and shapes, (20 the
number of lattice defects (21) and the large value of the bulk diclectric constant. ¢, will
tend to mask changes in the lincar absorbance spectra that are due to a size dependent
¢, .The host matrix also plays an important role in determining the width and the peak

position of the surface plasmon peak.

2.3_SIZE EFFECTS

Small metal particles almost never have plasmon peaks as sharp as those
predicted by the simple Mie theory.¢22) The reason for this is that the fundamental
clectronic properties of small metal particles differ from those of the bulk. i.e., small
metal particles arc intrinsically different from a similar volume of bulk meal, because it
is the near infinite continuous lattice of metals that defines their clectronic structure.

This is known as the size effect.t 23. 29 Ieis an inrringic effect, due to the change in

13




the propertues of the nuerad at small ervstallite size whereas the varation mooptical
properties with parucle diameter ¢ as descrtbed by the Mic theory ) is an exrrnsic elfect
defined by the geometry of the interaction of light with a sphere. the nature of the metal

remaining unchanged.

The size effect attects the inclustons in two distinct wavs. Fiestly, the
delocalized conducuon clectrons of the bulk find themselves, i the inclusions,
confined to regtons that are much smaller than their delocalizauon lengths. (For an
unconfined metal, delocalizauon lengths exiend over several unit cells). This results in
discrete optical resonance’s whose position, oscitlator strengths and dvnamics depend
on the extension of the aruticial continement. This effect is known as the Quantum
continement ctiect ( 1t is quantum mechanical in nature ). So basically, it relates o the
alternations in the cnergy structure of the material and comes into play when the
physical dimensions of the material become comparable with the charactenstic lengths

that govern quantum mechanical processes.

The sccond effcct that stems from the small size of the particles is that the
clectric ficld that acts on and polanses them is vastly different from the external
macroscopic clectric ficld appliced 1o the composite matenial. This is duc not only to the
particle size but also because their diclectric constant is completely different from that of
the surrounding matrix. This effect is known as the dielectric confinement effect.

Quantum and diclectric confinement effects will be discussed in more detail in
the following two subsections. They can be used to enhance the nonlincar response of

the composite material and arc particularly sensitive in the optical frequency range.

2.3.1 QUANTUM CONFINEMENT :

Quantum confinement in small metal particles was discussed for the first ime in
a paper by Frolich published in 1937.(23) He showed that metallic matter in the form of
sufficiendy small grains behaves qualitatively differently from the bulk metal. The basis
of his treatment of the electronic propertics of these particics was the fact that the
spacing between adjacent energy levels increases with decreasing particle size. He
assumed that tor a given particle size, the spacing between adjacent levels is constant
and independent of cnergy. The theory is still basically unchanged except that the
artificial concept of cqually spaced energy levels is removed and a number of more

realistic assumptons arc introduced.

Metal nanocrystals occupy a position intermediate between a molecule and the

bulk crystal. Therefore, the choice of @ model that accounts for the coexistence of




teatdres from both extremes s quite complex. For o svstem consisting of very tew
atoms. the most usual approach is the one using molecular orbitals, but this becomes
cnormously complicated as the number of atoms is increased. On the other hand. the
description is greatly simplified for an infinitely extended periodic system where the
behaviour of an clectron can be determined by studying the appropriate Schrodinger

cquauon which is given by

no_, .
HY(r) :(—;I——V' + V(r))‘l’(r) =EY¥(r) (2.2)
2m
where V(r) is the erystal potential experienced by the electron of mass m, and (1)

and E are, respectively, the state function and energy of this electron.(20)

Because the 1ons in a perfect crystal are arranged in a regular perfect array, the
potental V(r) has the periodicity of the underlying Bravais lattice, i.e.

V(r+R)=V(r) (2.3)
for all Bravais lattice vectors R.

The problem of an clectron in a solid is, in principle, a many-clectron problem
for the full Hamiltonian of the solid contains not only the one-clectron potentials
describing the interactions of the clectron with the atomic nuclei, but also pair potcntials
describing the clectron-electron interacuons. In the independent electron approximation
these interactions are represented by an effective one-clectron potenual V(r).

One is thus led to examine general propertics of the Schridinger equation for a

single clectron, ie., equation 2.2.

Independent clectrons, cach of which obeys a onc-clectron Schridinger
equation with a periodic potential, are known as Bloch electrons (26 ( as opposed 10
free electrons 10 which Bloch clectrons reduce when the periodic potental is identically

7L10).

According to the "Bloch theorem”, the eigenstates ¥ of the one-electron
Hamiltonian, above, can be chosen to have the form of a planc wave times a function
with the periodicity of the Bravais lattice as follows,

V()= " U, (1) 2
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Where O 0+ RY =0 (1), where Roas any Lattice vector The corresponding nand
cnergy £ (K) is a reciprocal space periodic tuncuon iee., £ (k + K}y = £ (k) where K
is any reciprocal lattice vector and & is the wave vector that labels the electron state in

the band n wathin the first Brillouin zone.

For an infinite crystal, cquation 2.4 has the form ot a tree wave. I, however,
the penodicity s broken (e.g. due to crvstal boundaries or defects ) then one has o
represent the clectron motion as a wave packet of Bloch sttes. It the defect
encompasses several umit eells, U remams essentially unatiected. and closc o & = 0

VNG AN Wt

Where F,(r) is the envelope tunction that has to be solved for.

Moecuals are charactenised by a single half-fitied band up 10 the Fermi level £,
with clectron and hole states on either side of it. The clectron and hole wave funcuons
will thus be of the form,

‘f’(re,rh) = F("e-rn)U:('e"‘n)Uh(" "n)

(4

(2.6)

where U, and U, are the ccll periodic pan of the Bloch band states for the conduction
(electron) and valence (holes) bands respectively at k& = (). Equation 2.2 can therefore

be rewnten as.

/R L , . .
- Vi — V.V, VUV F ()= EF(r 1)

L4
2m, 2m,

2N

Where, V

L4

» = Electron - hole coulomb interacuon, V= residual clectron and hole

coulomb exchange interactions, which are lumped together under the term many body
effects, and V, = Electron(holc) - impunrity interaction potential.

V... V.. and V, collectively constitute V(r). If, in addition (o the above
potentials, the electrons and holes find themselves confined to lengths less than their
dclocalization lengths, ( c.g., in crystallites the mouion of the charged particles is
hindcred by the interface with the diclectric host matnix ) then an extra potental
describing the confincment has to be introduced into the one-clectron Hamiltonian as

follows.




noo. hoo , ,
V- V., +V, +V
per R A h

2m, 2m,

mh

PV W ) = EF(r )
/ (2.8)

The confinement potential W ocan be visualised as an infinite sphenical potential well.
te.. W =01or r <aand W = oo for r >a (ats the radius of the crysalliw ).

The above equauon can. in general, only be solved with numerical methods and
cven so with limited usefulness because of the uncertaintics in the definitions and
determination of the different potential terms. However, the essential (eatures of the
quantum confincment can be quantitatively accounted for if some sumple analytical
forms for these potentials are introduced, and in addition their relative strengths are

properly accounted for.

The relative impact of the different potenual terms depends on the extension of
the confinement with respect to the charactenistc lengths that are associated with these
potential terms and determine their respective strengths. Whenever the continement
extension is larger than any of these lengths, the energy spectrum is determined by the
corrcsponding potential term while the continement only acts as a perturbation. If on
the other hand, the confinement cxtension is less than these lengths, the roles arc
reversed and the confinement suppresses the differcnt potential terms and imposes its
own spectral distribution.(12. 13)

In the case of metals, it tums out that the confinement potential W complewely
dominates all other potentials. The reason for this is that the half filled band in metals.
which is usually formed with s- and p- orbitals. can. for most purposes, be replaced by
an equivalent pair of parabolic bands, situated on either side of the Fermi level, that are
mirror images of each other and touch at k = (). The wave vector dependent diclectric
constant (k) is infinite at k = 0, lcading to the potentials V,,, V_,. and V, being

eh? m

completely screened to within a distance r, = %F, which is of the order of a few
angstroms, i.e. roughly equal to the lattice constant. Thus clectrons and holes behave as
free non-interacting particles over any distance in the perfect crystal.

The one-clectron periodic Hamiltonian can therefore be replaced by the free
clectron and hole Hamiltonian, lcading to the following equation

2m, 2m, erh

flz 2 h2 2 .
-—=V! —;—,—V,, +W F(re.rh)= EF(r,.r,)
(2.9)




[he ~cton o dus cquation viclds o sigminicandy ditferent crpentunction and
crgenenergy spectrum trom the bulk. e, the unually conunuous energy spectrum ol
the free clecuon Hamiltonian is replaced by a discrete energy spectrum, namely one of
quantum contined levels whose spacing depends on the extent of the continement and

can accordingly be moditied as desired.

In sphencal co-ordinates. cquation 2.9 can be solved to give

r
!

2N .
I"(r.U.O):(—?) ‘_——“Jl(an "))1 (6.9)
a b jaley) a (2.10)

=R,Y"(6.9) (2.11)
using the boundary conditdon F(r =a)=0.

Ji is the spherical besset function of order [, @, is its nth zero and Y;"(6,0) arc the

spherical harmonics. The energy of the state given by quantum numbers n, | and m is,

E, =(an1)ZEo . (2.12)
ho
where E, = Sy is the ground statc cnergy.
a

2.3.2 DIELECTRIC CONFINEMENT :

Despite their disparity, all composite materials that are formed by uniformly
dispersed metal or semiconductor crystallites in a liquid or solid transparcnt dielectric
share an important feature that has an essential impact on their properties in the optical
{requency range: because the size of the crystallites is much smaller than the incident
wavelength and their diclectric constant is very different from that of the surrounding
transparent diclectric, the electric ficld that acts on and polarises the charges of these
crystallites can be completely different from the macroscopic Maxwell ficld. This effect
is known as the diclectric confinement effect

2.3.2.1 LINEAR REGIME :

[n gencral. the metallic crystallites embedded in the dielectric are not completely
uniform cither in sizc or in shape. However, in order o explain the essential features of
diclectric conlinement several features of the composite material can be considerably
simplificd. Firsuy, it can be assumed that the surrounding host diclectric, liquid or
solid. 1s an ideal isotropic diclectric of diclectric constant €, with the metal particles




unitormly and randomly distributed in small volume concentration i They are
assumed to be spherical in shape, with a diameter d = 2a that is much smaller than the

optical wavelength A

e /’

e e e

// ,// /.
S
S - / .
PR
/' ’ e /, "
/// KLY
/ S S S
Figure 2.4 : A small sphere of diclectric constnt €, embedded in a matrix off
dielectric constant €,.

In the linear rcgime the relevant optical coctticient of such a crystallite or
inclusion, of volume V, is the polarizability «, and its diclectric constant £, can bc

defined by the relation,

£,=l+47t;(f”=l+47r%1 (2.13)
where ¥ is the lincar susceptibility.

The diclectric constant is expected to be a tunction of the particle size. Its limit for large
particles 1s the bulk value ¢,.

Sccondly, if 1t 1s assumed that the volume density of the particles in the
diclectric, p, is so small that the interaction of the induced dipole moments on the
particles can be ignored, then an effective diclectric constant € for the composite
medium can be introduced, whose relation to €,, ¢,, and p is given by the Maxwell-
Garnet expression, (©)

€-E€, £ -¢€,

= 2.14)
£+2¢, p£,+2£,, (

This relation s a straight{forward consequence of the Clausius-Mossotti
approximation for the local field corrections for spherical polarizable particles (26) For
p << litreduces to,

19




&= .
E=E +3/n‘hL ' "—J (2,15

Equation 2,14 can be derived from Lorentz-Lorenz focal ficld arguments as

follows:

Consider a collection of molecules subjected to an external clectric field, £. The

dipole moment induced in any one of the molecules 1s given by,

H=ak, , (2.10)

where £, is the Lorentz local ficld, which consists of the external ficld and the ficld

due to the other molecules, and @ is the lincar polarizability.

B = E+ 5P 1)

and P is the induced polarisation.

If the number of molecules =N, then,

- - - 4rx -
P=Ny=NaE_ = Na(E+T”P) (2.18)
or
- N - -
Pz=—gr—E=yE (2.19)
| -—Na
3
where,
m_ Na
X = (2.20)
l——3—Na

Equation 2.20 can be rewritten as,

e"~-1 4nm

m= 3 Na (2.21)

where € is defined as,




S = ey e

FEquation 2.21 is the Lorentz-Lorenz law. [t can alicmatively be stated as,

or,

g e +2) .
I"In('dl :( )I‘ (224)

M
where ( 3 ) is called the local field enhancement factor.

These arguments can also be applied to a composite matenal in the presence of a
uniform clectric field E.(28.29.30) The polarisation induced in the material due to the
external E field is given by,

P=y,E+P (2.25)

where x, is the susceptibility of the host matrix and P is the additional polansation

due 1o the inclusions.

P = Njii = Ne,a,E, (2.26)

. : . . £ -€
f is the dipole moment of the inclusions, @, = a‘(—‘———A

, 1s their polarizability and
£ +2¢,

E, is the local field, i.e.. the ficld in their vicinity.

Just as in the denivation of the Lorentz-Lorenz law, one can write,

E-E+2%p (2.27)
3¢,

which implics that,

- Ne, o o~
r =~T7'l’_—'—b (2.28)
|- TN(Z,

Combining cquations 2.25 and 2.28 one gets,
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D=y b 2 (2.2

. . Ne,«a
/’:/‘{’[: =Sy =g, + <l (2.3

7
| -—Na,
3

Using the detimuon, ¢ =+ 4y, tor the diclectric constant. equauon 2.30 can be

alternauvely expressed as ¢

&=r &=
h - l) ! h (2.31)
e+ 2, £+ 28,

which is the same as equation 2.14.

£, is complex. €, = € +i€,, and frequency dependent. It can be scen that the

Cl
¢xpression in equation 2.31 shows an enhancement close w the frequency @,, such

that,

£{w,)+2¢, =0 (2.32)

which is the condition for the surface excitation or surface plasmon resonance
frequency. The width of this resonance is determined by €, . The absorption coefficient

as a functon of wavelength can casily be calculated from equation 2.31. [tis given by,

187 .. £
= €

«a - h . .
A (€ + 25;) +2¢°

which is the same as the result that is abtained using the Mie theory o calculate the

opucal constants of composite matenials.
Combining equations 2.27, 2.28 and 2.31 it is possible to derive an explicit

relation between the local field experienced by the inclusions and the cxternal
macroscopic which is given by,

E =—"2"F (2.34)

Similarly, the ficld inside the inclusions is related to the external ficld through,

to
to




Combining cquations 2.34 and 2.35 the field inside the inclusions can be expressed in

terms ot the local field as,

< £, +28, -
= : - : [Llli

L, = o => L, =fE (2.30)
3¢,
where f) is called the local field enhancement factor. Equation 2.36 constitutes the

main result of this secuon.
2.3.2.2 NONLINEAR REGIME

In the presence of an intense clectric ticld the polarisation induced in the

crystallites may be written as,

AP=PY 4 PP piy (2.37)

where P with n>1 is the nonlinear polarisation term of order 7. In the case of an
isotropic composite with random distribution of inclusions P = 0,

PO = xE, and

P = yEEE,

(1)

where ¥’ and 2 are the lincar and third order effective susceptibilities of the

composite material.

The term P! is related to third order effects, the most important of which is the
intensity-dependent refractive index or the optical Kerr effect. This effect is involved in
a wide variety of important processes, including sclf-focusing of a laser beam.(31) self-
phase and frequency modulation,(32) "soliton" pulse propagation.(33) and "optical phase
conjugation”.(34) It can be described as an optically induced change of the optical
diclectric constant, Le.

e = 12y V| E(w)f (2.38)

This change of € contains contributions from both the surrounding diclectric and the
embedded crystallites, denoted by d¢, and 8¢, respectively. Close to the surface

plasmon resonance frequency the contribution trom the surrounding dielectric is
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neghgeible compared 1o that from the crvsiailiieceven tor pe < 1 Phus a change, o o
the diclectric constant of the inclusions will result in a change in ¢, the dielectric

constant of the composite given by.

‘ TR N
A = /)(—-ﬂ—) e, = pryor (2.39)

The above equation is obtained by differcnuating equation 2.15.
It the third order suscepubifity relevant to the internal ficld within inclusions is
designated by ¥ then by analogy w equation 2.38.
3 2
de, =12z V|E,) (2.40)

Substituting for J¢; in equation 2.39 gives

8¢ = pf,*8e, = 2prlf [ 1,27 & 2.41)

and,

2 = plfif £ (2.42)

Thus it can be scen that the nonlineanity can be enhanced by an amount equal to
the fourth power of the local ficld factor, close to the surface plasmon resonance
frequency. As onc moves away from this resonance frequency, the local field factor -
approaches unity. At this stage diclectric confinement plays no role in the enhancement

of the nonlincarity.

Another important point to be noted in equation 2.42 is that the macroscopic
susceptibility ¥ can also be enhanced by the intrinsic quantum confinement mediated

cnhancement of the susceptibility of the inclusions, y.
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2.4 NONLINEAR OPTICAL PROPERTIES

. . g eqr . . . 3 -
I'he third order susceptibility of the inclusions, !, can be calculated using the

quantum mechanical expression in equaton 1.2 which is repeated here tor convenience,

Ne'!
) -
,};M,y(—m‘,.wl.wg,cu‘)~ i N pola) x
tlo- 14 abed

T
{u nur

—w, —w,)(£2,, - w,)

f nhintn

[y

+ 47 similar lcrmsl-
[ 2.4

T}

In order to calculate the susceptibility, the matrix clements of the transition dipole

moment, 7, must be known. They can be calculated using the relation
(h . ¢

[H.r]= —1(—— p where p is the momentum operator and 7=| — |p
.m m

The radial part of r between two states r (quantum numbers n, 1) and s (quantum
numbers n', 1+1) is given by,

jrzdrR,,,rR,,.,.I (2.49
0

Substituting for R, from equation 2.11. changing the integration varable from r 0

r . . .
— = x and integrating by parts gives.
a

a 4 ' EE. 1?2
fr“drR,,,ar.,,, = —7(1—"’9-"2’—‘—'—(1 =dak, —(—"i—"fi)——, (2.45)
Y (a"/ - a"'“’l) (En'lﬂ - Enl)
Therctore the radial part of the 7 matrix clement is
_ 4aeE, (E,E,)m

With thesc transition dipole moment elements it is possible to calculate the third order
susceptibility, ¥, of the composite materials using the expression in equation 2.43. If
the expenments are performed in the vicinity of a resonance, only a few of the elemems

are significant.




Ve suseepttbiline of the iclusions consists ot three mean contitbunons, The
Hist contrtbution, called the muaband contribution, 1s caused by ransiions within the
s-p conducton band. 1t is mainly imaginary and negative and shows 4 strong size
dependence. This s to be expected since the highly delocalised clectrons e the
conductuon band would be greatly affected by a decrease in their delocalisaton lengths
due o guantum continement. The second conutbution, called the interband
contribution. s due to transiions trom the J - valence band o the s-p conducuon band.
[tas also mamty imagmary and negauve but is independent ot the size of the inclusions.
There are two main reasons for this. Firstly, the d - band clectrons have a much greater
ctfecuve mass than free clectrons. Sceondly thev are already localised and are
consequently unattected by the quantum continement. The List contribution, called the
hot clectron contribution, arises due to a change in the Fermi-Dirac distribution of
clectrons. about the Fermi level, caused by their increase in temperature on absorbing
energy in a resonant process. This contribution is imaginary, like the first two, but it is
positive. In the chapters tollowing this one, several experiments are described which

3)

i

were undertaken in order evaluate the magnitude of the different contributions to y

and to ascertain which one, if any, was the dominant one.

The next three sections of this chapter are devoted to a dewailed discussion of the
three different contributions.

2.4.1 THE INTRABAND CONTRIBUTION :

Equation 2.43 for the calculation of »*" in terms of the transition dipole
moment matrix elements contains 48 terms. Keeping only those terms for which one of
the factors in the denominator is equal to ¢/ 7,. where T is the lifetime of the states.

the number of terms reduces to 32: 16 different teans. cach appearing twice.

Considering the different components of the ' tensor, the terms can be
divided into three groups : cight terms in ", four terms in x4, and four terms in

2", such that,

X;:L - 2(1;» +Z;‘) +Z;3)) (2.473)
I(.:‘)‘ = Z(En,yzil) + Huwx;” + mel‘\”) (247h)

[RJ}

Zows = Xaw = Ean( 1"+ 20 46 (2 + 1)+ (0 + 137) 2470

where £, 1y a corrective multiplicative factor when (k1) # (veen) and
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I e e =1 (2.48)

na [R%Y t T

- . e e - 3y . .
IFor a two level system consisting of initial and final states. rand s, x,” is given by,

A
Ay ! ,

LN
r. 77w l((u‘, —m—iT,")[(m‘, - w)’ +T,'2]

==V

Bl
3

!

——— (2.49)
(w, +w+ :'T;')[((u\, + o) + 1‘§"l

where V is the volume of the crystallite, T, is the dephasing time, A is an angular
form factor, 7, is defincd by cquation 2.46 and w,, = (E, - E,), setting h=1 for

convenience.

There are two main contributions to x!”.

The first onc¢ ariscs when
w = E_—E_, and the sccond one when E; = E . In the first case it is only necessary to
consider the first term in cquation 2.49 since its contribution dominates that of the
second term. In the sccond case, both terms need to be considered. However, it turns
out that the overall contribution to x in this case is much less than the in first case

and it can be safcly ignored.

Substituting for 7, from cquation 2.46. cquation 2.49 can be rewritten as,

2 T 1 ... .« (EE)
(])—_—-"-V—L——,A daekE ris
XI 3 7»~2 S ( ae 0} ,zJ«(Er_E:)d X

I
T 7 2.50)
(E:_Er'—w—irl_l)[(Ex—Er—w)2+7.2_2] (

for the case when o, =(E, - E,). The summation in the above cquation can be

replaced by an integral to give,
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. 2.0 : . |
o= =SV — —— A {daek U EYdE} ——dlE
/.l \‘ -1-.‘ (l_)‘ ( ¢ l\) (J; ( )( 2AE

j LE | l

l(h' - l:'): (£ - If-(u—l'T:-l)[(E - Il““’): * 1.-::”

(2.5

where u(£) s the density of states. In the second integral. the densiy — takes o

account the fact that the £ number ot the s state is determined by the { number ot the o

state and is of difterent panty.

Equation 2.51 can be solved to give,

(4(16)

x> = 4rT ———FEEpg,(v) (2.52)

. W l 1 .
with v=— and g(v)== [x**(x+v)"dx.
E! v .

(3) (3)

The quantum mechanical expressions for y;” and x;” are given by,

zlrr,‘l .l | |

& by 1(0),5 -w —iT;')[(w‘, -w) + T;’]
1

+ ; - (2.5%)

(0, +w +iT:")[(w" + ) + 'I’;Z]
and

o LT glefle| ) |

x 3T, r;. l(wu, - —iT;')[(w,, +o) + Tz‘z]

+ 1 : (2.549
(a)w + +iT3")[(a)" ——a))2 + T,"]




‘The only impnrlumcumrihulion 1o Z‘” is when @, and @, are close o @, In this
i the same way as 10r /_' ', the final result obtained is.

%) Voo (4”")4 312 112
X2 —IISII’A T, Y EyTE7g,(v) (2.55)

with

(V) =—jr" (x+v)"*(x+2v)" 2k (2.56)
Vi,
Similarly, for ", the only important contribution is when @,, and @,, are close to
@, which means that the first term in equation 2.54 can be 1ignored, giving,

o _ v (4ae)

2 18”AT EJPE;"g\(v) (2.57)
with
l ; 512 172 172
g(v)= ;jx (x+ vy (x-v)"dx (2.58)

where x, = max(v,1-v).

Combining equations 2.47a, 2.52, 2.55 and 2.57 yields,

)
D 2,0 _ m & (V) +24(v)
— 21(3)[ : J (2.60)
0
where,
2E N\ £(v)
= T f 1
“ 2( m ) 8, (V) +g,(v) 2.eD

or, substituting for Z:})~
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( . . ¢
PR N B RTY Y s — )| [ S (2.02)
Camhe d,

0.14i I
P Lrr —.~—‘—/~;:_-;,(v)(| —i] (2.03)

. o ,"\ i
£, a - mh'w a,

in SI units.
When a=a,, ¥\ >0

vt

. 3
When a <<dy, Yo, = d

When a>>ay, 0 <a

For the casc of gold, with £, = 5.5¢v and scetting T, = 20fs, a, =136A .

The magnitude of y'" can be approximated by inserting suitable values for the
physical parameters in equation 2.63 above. Setting 7, =0.5ps and @ = 3.55x10%s™
yields, || = 4.23x10™ m* V2.

2.4.2 THE INTERBAND CONTRIBUTION :

2.4.2.1 LINEAR REGIME :

It is well known that the gencration of an optical plasma, due to interband
transitions, can result in 4 strong modification of the diclectric function €(w) in a
semiconductor.(36) The same argument can be applied to the metallic crystallites in the
composite material. According to the Drude theory of metals.t37- 38) the complex

dielectric constant of a free clectron metal, to a first approximation, is given by

gw)=1-—=% (2.64)

-

where a); = is the plasma frequency, with n, ¢ and m being the clectronic

concentration, charge and mass respectively.

In the casc of alkali meuals, there is a striking correspondence between theory
and experiment, in this respect. In other metals, however, different contributions to the
diclectric constant compete quite substantally with the Drude term.
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The diclectne constant of noble metals consists of two werms: one due to
mtraband transitions within the s - p conduction band and the other duc to interband
transitions from the d - valence band 10 the s - p conduction band.

W) =€, + € (2.65)

wira
The free electron intraband term corresponds o the Drude dielectrie consant. i.e..

—u);,

m(w+i/ rl,”)

¢ ntra

(2.00)

where 7, is the mean collision time for tree electrons taking the surface into account.

In the large sphere limit 7,; reducesto 7, /2.

The imaginary part of €,,,, is dependent on the joint density of states involved

in the transition and on the momentum operator between the states. Itis given by,

£l = 4’”’22j ‘”‘l Pk £,06)(1 = £,(R)S(E, (k) - E(k)~h@) (2.67)

P, (k)is the matrix clement of the momentum operator between states corresponding the
quasi momentum fk, f, and f, are the occupation numbers and E; and E, arc the
energics of the initial and final levels. Near the surface plasma resonance frequency, the
sum over the indices ¢ and j is dominated by one term whose initial state is the top of
the valence band and final state is the conduction band. Since the integral in k& space 1s
dominated by the vicinity of the X point of the Brillouin zone where the band gap is
1.7eV, (See figure 2.5) the dependence of P, (k) is weak and it can be approximated to

he a constant P. Equation 2.67 can then be rewnitten as,

476’

P ——|P[ J(®) (2.68)

£ inter =

and the corresponding absorption coefficient a(®) is given by,

a(w)=——-¢, (2.69)
n{w)c
J(w) is the joint density of states. In thermal equilibrium the contribution to the
clectronic density from electrons in the nth band with wave vectors in the infinitesimal
volume clement dk of k space is given by the FFermi distribution
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Band structure of gold (fig. 2.5) Reference 2.39




e ]
f(T)= —— (2.70)

l+¢ 4T
with OF = £, — (£, + hw), where E, is the d-band cnergy. &, is Boltzmanns constant

and T is the temperature,
The jomnt density of states 1s therefore given by,

ok (

Zj—f (k)

1, (K))S(E, (k) ~ £ (k) - heo) 2.71

NONLINEAR REGIME :

If the excitation frequency uscd is resonant with a particular interband
transition. the main contribution to ¥ will consist of the contribution of the two levels
involved in that transition. Since it is resonant, it will be mostly imaginary with the
imaginary part given by (8.35) 977
%

3

4 T ¢ 4
im 2% = =3 A7 i L tP )

ma)

. 2

x £~ £,0) 2

S5(E;(k)- E(k) - ho) (2.72)

Where T, and T, are the cnergy lifetime and dephasing time corresponding to the two

level system and A s an angular torm factor =1/ 5.

Since only contributions from the X point of the Brillouin zone are relevant 1o
the integral in cquation 2.72, by analogy to equation 2.68, cquation 2.72 can be
rewritten as,

Imz®, = -2EAT T, (P J(@) 2.73)
3 “hm'ew

The product J(@)|P|* can be obtained from the value of £,,. which in turn can be

inter

oblained by subtracting the Drude term from the overall diclectric constant. |P|2 is given
by the expression 40)

<21 |

2w

(2.74)
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and i s the gap energy. Taking ¢, = 190 G = 130 Sep dhrom the pomt Noan

. . In -t . : e R Y
the Brillouin zone) and @ = 3.55x10"s 7 (surface plasmon resonance frequency),

unves

|Pf = <10 ™ (kg m s ) (2.75
and

Imy.., ==L810 m v (2.70)

In order to obtain the result in cquation 2.76, the values for T, and 7, were

approximated to be 2x10™" and 2x107" respectively.®)

This contribution to y'”

is size independent down to very small sizes. The
reason for this is that the quantum size effect should be unobservable for the d - levels
because of their large effective masses and the fact that the electrons already have a
localised character. The calculation of the interband contribution is atfected by s-p band

only for very small spheres with sizes less than 2.5nm 4. 42)

(3)

Thus, in this case, the contribution to y'’ is approximately an order of

magnitudc greater than that due 10 intraband transitions.

2.4.3 THE HOT ELECTRON CONTRIBUTION :

The third mechanism contributing to the susceptibility of the inclusions is the
hot electron contribution. It results trom the modification of the population of the
clectron states, the Fermi-Dirac distribution, caused by the clevauon of their
temperatures subsequent to the absorption of photons in the resonant process, but
betore the heat is released to the lattice of the crystallite; this leads to a contribution to
x"” that is positive, imaginary and siz¢ independent.(9. 10. 12, 13)

Because the specific heat of the conduction electrons is weak, on the absorption
ot photons they can heat up o a temperature that is much higher than that of the lattce.
It has bcen shown that it takes a few ps for these hot clectrons 1o come back into
thermal cquilibrium with the lattice.(43. 4 During this time, their Fermi-Dirac
distribution gets modified resulting in part of the one-clectron levels below the Fermi
level heing emptied and part of the one-clectron levels above the Fermi level being
occupied. This feads to a modification of the diclectric constant of the inclusions and

consequently contributes o the overall susceptibility.
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Fhe energy ol the photons in the vicinity of the surtace plasmon resoance
frequency is very close o the band gap which exists in gold near the L point of the
Brllouin zone ( hw, = 2.4¢V) and therefore this eltect 1s very strong. The relevant part

of the total diclectric function is called ¢, and its imaginary part is given by, (10

e, =C(1-((T)) (2.77)

where f(T) is the occupaton number of the conduction electrons and ¢ is a

iemperature independent constant.

‘The change in the diclectric function as a function of temperature is obtained by

diffcrenuating cquaton 2.77 :

38, - 5E "(5E 2
- = 2 T 2.78
ar KT ”X"( KT Jf (1) (2.78)

Sctting hw, 10243 ¢V and C =12 leads 1o the following estimate,

%,

= 2.9x107 K" (2.79)

Atroom temperature f(7T)— | which implics that £, = 0 . If the temperature
of the conduction electrons changes, then the change in ¢, results in a change in the
overall diclectric constant of the inclusions, ¢, given by,

O¢, =%€T—"8T (2.80)

where 8T is the change in temperature of the conduction clectrons. It is related to the
cnergy absorbed E,, and the specific heat 9T, of the clectrons and can be calculated

using,

E
OT = —2&= 2.81)

v

The energy absorbed per unit volume of metal by the free electrons is,

2 - w
E,, :lfxl Cvfolo;; (2.82)




where 7oas the docal teld factor, &, s e iagmary part o the Drude comtnbution to

the diclectric constant, g, 1s the tme constant tor the cooling of the clectrons, /s the

incident laser energy and - is the refractuve dex of the composite matenal.

Che quanuty &, 7, i equation 282 0s given by,

. (l):_ T, -
EpTy - T — (283
o T,

-
where @, 1s the plasma frequency and the ratio ——= s equal to the number of collisions
¢ r .

an clectron has 0 undergo in order o wanster its exeess energy, cither 1o the metallic
particle phonons or the phonons of the surrounding diclectne through the interface. If
the excess cnergy is 2.33 ¢V (hw) and cach collision, on average, transfers 0.02¢V.,
then the total number of collisions required is approximately 120.443) Taking
W, = 349x10"%5 7 gives £,7, - L3x10

Combining cquations 2.79, 2.80, 2.81 and 2.82 gives an expression for the

change in the dielectric constant of the inclusions which is related to their suscepubility:

85, w 241
2.84
£, 'flf EpT onc“)/f X ( )
24n° 2
- 2017 1, (2.85)
nc
where
o _ €L EpTo _ I_\ (2.86)
Jdr yI 24n
Using ¥ = 66Jm™ K™ (26) gives
2 = 10"esu=1.5x10"m’V ™ (287

depending on the wavelength of the exciting radiation.

The contribution is mainly imaginary. Contrary to the first two, its sign is positive.
Also, 1t is an order of magnitude greater than the interband contribution which s, in

tumn. an order of magnitude greawer than the intraband contribution,

16




CONCLUSIONS

From this chapter the obvious conclusion would be that in an experimental
situation, the hot clectron contribution would be the dominant one tollowed by the

interband and mtraband contnbutons, in that order.

This, however. is not stricdy true. The numbers obtained are only approximate
as a lot of the parameters in the equations are not known to a sufficient degree of
accuracy and do not merit such a statement. It should be possible, though, to determine
experimentally, from the sign and the response time of the susceptibility, the physical

mechanism responsible for the process.

The following four chapters describe different experimental techniques for
determining ¥ and, hopefully, the physics underlying it.
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CHAPTER 3

INTENSITY DEPENDENT ABSORPTION MEASUREMENTS

Various experimental techniques are known tor determining the real and
imaginary parts of the third order suscepubility 'V, discussed in chapter 1. This
chapter tocuses on a method for evaluating these quanuues m a nonlinear material by
measuring, as a function ol the incident light, the matenal’s absorpuon and the phase
change induced by il 239 A completely lincar material will show no change in
absorption with intensity; matertals that are "two photon ( or multiphoton ) absorbers™
show an incrcasc in absorption with increcasing intensity and materials that are

"saturable absorbers” show a decrease in absorption with increasing intensity.

EXPERIMENTAL TECHNIQUE

The experimental set-up is shown in figure 3.1. Using a Gaussian laser beam in
tight-focus gecometry, the transmittance of the nonlincar medium is measured, in the far
ficld, as a function of its position Z, measured with respect to the focal plane of the
lens. Such a trace i1s expected to be symmetric with respect to the focus, where there is
cither 2 minimum transmittance (c.g. multiphoton absorption) or a maximum
transmittance (e.g. saturation of absorption). The coelficients of nonlincar absorption

and hence the imaginary part of y*

can be casily calculated from such a curve.

If an aperture is placed in front of the photodiode, it is possible to detect
contributions from the real part of the susceptibility as well. This contribution causes
the beam to be focused or detocused ( depending on the sign of the nonlinearity ) as it
passcs through the sample. Focusing of the beam, when the sample is on the positive
side of the focal plane, causes increased aperture transmittance, while defocusing has
the converse cffect. If the sample is on the negative side of the focal plane, the situation
is reversed. By subtracting the effect of the imaginary component from this curve ( by
using the first trace ) it is possible to separately evaluawe both the components of the
nonlincar susceptibility.(@. 3

The laser system used was a tuncable PRA Niwogen pumped dye laser with
500ps pulses operating at a repetition rate of 5 Hz. The experiments were performed at
two different wavelengths of S16nm and 522nm. which lic very close to the surface

plasmon resonance frequency. The dyve used was Coumarin 485, The output energy
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from the laser at these wavelengths was = 40/ and the beam was tocused down o a
spotsize ot = 40pm giving a peak intensity of the order of 10°W / em”.
Irocussing Lens

/ Si Photodiode

Nitrogen Pumped
Dye FLaser —

Motonsed Translation Stage

Figure 3.1 : Experimental Set-up for Intensity Dependent Absorption
Mecasurements

GENERAL_THEORY

The description of resonant optical processes is greatly simplified by restricting
attention to the dominant resonant transition. The most widely used description is based
on a model of a two lcvel atom. If there 1s a distribution of transition frequencies
between the levels the system is considered to be inhomogenously broadened.
Saturatcd absorption spectroscopy is a useful tool for determining whether a material
can be described by homogcenous or inhomogenous saturation because the dependence
of the absorption coefficient on intensity is different in both cases.(©® If the material can
be described as a homogencously broadened two level system then the variation of the
absorption coefficient with intensity is given by :

sa (3.1)

where a,(w), I and [, are the unsaturated absorption coefficient, the input intensity

and the saturation intensity respectively.

For extremely inhomogenously broadened systems the expression for the
absorption coctficient is modified o read :

/ 172
[l+l—]
Y] (32)
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In phy~ical terms, the mhomogenous gam o absorption saturates more slowh
at large intensities because the signal can draw energy from an creasingly wider range

ot packets as the signal intensity increases.

Equanons 3.1 and 3.2 hold. provided that the contnibution from the real part of

the suscepubility can be ignored., t.e., there should be no aperture presentin front ot the

signal photodinde.

The expeniments. with no aperture, were performed on 1O ditferent samples and
the resulant data was fitted by a nonlinear least squares fit using both equations 3.1 and
3.2, with [, being the only fit paramcter. In all the cases. equation 3.2 (i.e. the
cquation for inhomogenously broadened systems ) gave a tar superior (it A typical
result is shown in figure 3.2. The sample in the figure is an 18nm colloid dispersed in

detonised water.
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Figuie 3.2 : Absorpuon Coefficient Vs Laser intensity. A = $22am
From the lcast squares fit it is possible to determine /., which is then used in the

cquation

Imy = EqCNg QA

7

2al, (3.3)
to calculate the imaginary part of the third order susceptibility.
£,. ngand «, are the permittivity of free space, the lincar index of refraction and the

low intensity absorption coetficient of the sample respectively.
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Equaton 3.3 can be derved by starting from Maxwell's eguations as follows

l‘or nonmagnetic, centrosymmetric materials, the polarisation induced by the incidence

ot an intense light source is given by

P=ey\x" +y E.E)E

(3.4)
Using this expression in the equation for the displacement vector
D=¢,E+P (3.5)
we get
= 3 -
D=¢g,(1+ 3"+ yPE.E)E=¢g,(¢,+£,)E (3.6)

where ¢, =1+ " and ¢, =y"E.E, are the lincar and nonlinear parts of the

permittivity of the medium.

The refractive index of the material, n, will also undergo a change due to the incident
light. This is expressed by

n=ny+n,l 3.7
where n, and n, are the linear and nonlincar indices of refraction.
Refractive index is related to the permittivity of the medium, €, through

€ =n® = n; + 2nyn,l +higher order terms (3.8)
Here n; = ¢, and 2nynl =¢,,.
Thus,

2’10'121 = X(J)E.E (3.9)
which implics that,

(3)

2 = A
2g4cn, (3.10)

n

since
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[ -eond L A
For an absorbing matenal we have the equatons

I =1,expl~z) and £ = E,cxplinkz)

R RS
where /) and E, are the incident light intensity and clectne ficld respectively, s the
lincar absorpuon coctficient and & is the wave vector.

Irom equation 3.12 we get

)
Imy ' w

a=-lm(n)k = -
2egen; ¢ (3.13)

The werm @ is the stope of the linear pant of the intensity dependent absorption line. It
can be approximated to

a = —an (3 l4)
20,
Combining equations 3.12 and 3.13 results in
Imy" = £Ca g
27l (3.15)

which is the same as equation 3.3,

Once 1,

. Nas been determined from the nonlinear least squares it and @, from
a low intensity, linear absorption spectrum, it is a simple matter o compute the
imaginary part of the third order suscepubility. This was done for all of the samples and

the results are tabulawed in table 3.1.

The real pan of the susceptibility can be measured by placing an aperture in
front of the signal detector, as described carlier on in this chapter. It was found that the
trace observed in this case did not exhibit increased transmission peaks and decreased
transmission valleys, indicative of a refractive index change but was, in fact, identical
to the trace obtained with no aperture. This implies that at these wavelengths. that are
very close to the surfacc plasmon resonance frequency, it is the imaginary part of the
susceptibility that dominates over the rcal part. This, of course, comes as no surprise
hecause the real part of the susceptibility is expected to be low in the vicinity of a

resonance decreasing to zero at its peak. The imaginary part ol the susceptibility,
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should. on the other hand increase to its maximum value at the peak ol the resonance

frequency.

RESULTS OBTAINED

Size ao(cm") ao(cm") Loa Lo Ilmx‘"’l |lm;{""|
Sample Wiem' | Wiem® mv m v
A Sl6nm | 522nm S16nm 5290m $16nm $990m

N 395 5.50 5.74 [3.45x10" {3.45x10* | 1.12x 107" | 6.49x 107
M 392 8.81 9.32 [4.70x10° | 1.89x10° [ 7.23x 107 | 1.92107"
O 365 6.10 6.29 |1.05x10° | 1.10x10* | 2.24x107" ] 2.23x 107"
R 326 | 25.79 | 26.82 |3.18x10* | 2.36x10% | 3.13x10™" | 4.43x10™"
S 184 | 4.67 478 [8.01x107 |3.75x10°® | 2.25x107° | 4.97x 10
Y 179 | 9.84 991 |1.93x10°{1.52x10® | 1.97x107" } 2.54x107"
K 172 | 15.94 | 1598 |2.72x10°[1.86x10%|2.26x107" |3.35x107"
Z 164 4.69 475 |1.63x10° ] 1.81x10° | 1.11x107° | 1.02x107"
P 52 8.69 8.82 [5.32x10° [ 7.13x10° | 6.3x107 [4.82x107%
Q 47 8.81 9.09 |2.78x10°]1.40x10° | 1.22x107*° | 2.53x 107"

Table 3.1 : Experimental Results

By observation of the table it is obvious that there is no relationship between the

size of the inclusions and the nonlinearity of the solution. What is evident is that

Im x(3)

wavelength of 522nm, is shown in figure 3.3.
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Figure 3.3 : Imx® Vs a,. A =522nm.

At higher concentration, the value for Im y*” scems to level off. Past a certain
volume fraction of particles, the Maxwell Gamneut approximation for calculating the
local field in the inclusions is invalidated. If the particles are sufficicndy close to interact
significanuy with each other, the field in each individual one is reduced, leading to a
correspondingly lower value for the macroscopic susceptibility.

The quantity, Im ¥**, in the above table and graph, refers to the nonhinearity of
the solution, not that of the actual gold particles. In order to extrapolate, from this, the
correct value for the inclusions, the concentration of the solutions and the local field
factor discussed in chapter 2 have to be taken into account.

From cquation 2.42 it can be seen that the suscepubility for the inclusions, y'¥

]

18 refated 1o the macroscopic susceptibility of the solution through :

(3)

o _X
SR TIE

where p is the volume fraction of the inclusions and f, is the local ficld factor. Using

this equation it is possible to calculaic ¥ and the results are tabulated in table 3.2.

(3.106)
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Sample L iy P /i 1y X e
N 516nm 522nm S516nm 522nm
(A) ety RIS x107 | Si6nm| 522nm Ty V-
N395) | -1.12x107 | -6.49x 107 | 1.90 | 0992 | 1.090 [6.06x 107 [ 2.41x 107"
M(392) | -7.23x 107 | -1.92x 107" | 3.16 | 0.964 | 1.060 [2.65x107"° | 4.81x107"
O365) | -2.24x107" | -2.23x107" [ 2.23 | 0937 | 1.031 | 1.31x107 | 8.88x 107"
R(326) | -3.13x107° | -4.43x10™° | 9.98 | 0.886 | 0.975 | 5.09x10™° | 4.91x10™"
S(184) | -2.25x107° | -4.97x107° | 1.14 | 1.114 ] 1.222 ] 1.28x107"° [ 1.95x107"
Y(179) | -1.97x107% | -2.54x 107" | 2.65 | 1.257 | 1.378 [ 2.97x 107" | 2.66x 107"
K(172) ] -2.26x107" | -3.35x10™ | 4.37 | 1.230 | 1.350 | 2.26x107° | 2.11x107"
Z(164) | -1.11x107% 1 -1.02x10™ | 1.28 | 1.247 | 1.367 | 3.59x107° | 2.29x 10"
P(52) | -6.30x107° | -4.82x107° | 3.13 { 0.942 | 1.036 | 2.56x107" | 1.34x107"
Q@7 |-1.22x1077 [ -2.53x10™" | 2.77 | 1.085 | 1.191 {3.17x107"° | 4.53x 107"
Table 3.2 : Values of ¥ calculatcd trom the macroscopic susceptibility of the
solution.
CONCLUSIONS

The most important conclusion to be drawn from these results is that x!¥ is

also independent of the size of the particie, at least within the size range of this study.

The values obtained for y'» are almost an order of magnitude higher than those

i
obtained by Hache et al.(7- 8.9) This is not surprising since they calculaied their local
field factor by comparing the absorption spectrum of their largest particle, which they
approximatcd to have bulk values, 1o the absorption spectrum of all the other partcles.
w obtin ¢, , while in rhis study, the absorption spectrum of the particles was compared
to an actual bulk gold spectrum, to calculate £, (19 The latter method yields a lower
value for the local field factor and hence a higher valve for the intnnsic susceptibility of
the inclusions. By way of comparison, it is intercsting to note that Bil, microcluster

3

colloidal solutions are reported to have x,”’ values almost two orders of magnitude

greater than these ones for gold clusters.(©)

If, within experimental error '

can be taken to be constant, it turns out that
the susceptibility of the solution is proportional to the fourth power of the local ficld
factor which is in turn proportional to the square of the absorption coefficient. This is

exactly the same as the result expressed in figure 3.3.

In conclusion, using a simple but etfective single beam method, it is possible to

cvaluate the sign and magnitude of both the real and imaginary pars of the nonlincar
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aiscepubihiny o gomatertad Te s aso possibie o deterimne whether the mateinad s
nomogencously o imhomogenousiv broadened. Fhe mhomogenousty broadened
collotdal gold solutions used 1 this study showed a nonlinear response dominated by
the imaginary part of the susceptibility, which is to expected since the experiments were
pertormed inthe vicinity of the surtace plasmon resonance frequencey. The elfective or
macroscopic nonlincarity ol the solution 1s negauve. This is implied by the tact that the
abhsorption decreases with increasing intensity. The nonlincarty of the inclusions is
refated to the nonlincanty of the solution through the local tield factor .0 At these
wavelengths, 7 is nearly real and negative which leads to the conclusion that ;" is
ncarly imaginary and positve. Thus, while the absorption of the colloidal sotunion
decreases with intensity, the absorption ot the inclusions actually incrcases! This s a

consequence of the local ficld correcuon.

Despite the fact that saturated absorption spectroscopy is a very powerful and
useful wchnique, it provides no information on the dynamics of the interaction between
the nonlincar matenal and the electromagnetc light tield. To do this at least two or more
beams arc required. The following three chapters describe different experimental

techniques in which this 1s done.
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CHAPTER 4

DEGENERATE FOUR WAVE MIXING USING A COHERENT
LIGHT SOURCEE

Four wave mixing ts one of the most interesting and thoroughly investigated
nonlinear optical effects.(!) It is a process that is allowed in all media and has therefore
found numerous important applications. Becausc of the inherent resonant enhancement
feature, it has attracted a great deal of attention as a modem spectroscopic technique.
With appropriate arrangements four wave mixing can be used to study transitions
between excited states, to measure longitudinal and transverse relaxaton time etc.
Thus, experiments on transient four wave mixing can be used to study not only the
particular time-ordered four wave mixing process itself, but also 10 obtain the various

relaxation rates in the medium,

In general, transient four wave mixing deals with the situation where three input
pulsed fields, of either the same or different frequencies, interact in 2 medium in a given
time order. The radiative output, which is the fourth wave, shows a time variation
depending on the time sequence and separation of the input pulses. If the four waves
are all at the same frequency, @, the interaction is termed degenerate four wave
mixing, hereafter called DFWM. In general, two of the fields arc strong and are called
the pump fields and the weaker third field is called the probe field.

The sccond nonlinear polarisation term in equation 1.1, which expresses the

relationship between polarisation and the applied ficld,

P=g(XVE+yPE + yVE+...) @.1)

i.e., P=g,xVE.E.E is the one responsible for this process. (Recall that for
centrosymmetric or non-isotropic materials ¥y =0).

If the two pump beams are counter propagating and the probe beam enters at a
small angle with respect to them, as shown in figure 4.1, the signal beam propagates
backwards through the medium and remains everywhere a phase conjugate replica of
the probe beam. This process is called "Phase Conjugation”. It is tcchnologically very
important because it is possible to use it to design self-adaptive optical systems that
compensate for time varying phase distortions in, for examplc, high gain laser
oscillators and amplificrs, optical fibres, ctc.D)
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Pump 1 ' Pump 2

—_— Sample _——

Probe -7
7 A Signal
Figure 4.1 Schiemauc diagram ol a phase comjugauon experimental set-up.

The first ebservations of phase conjugaton by four wave mixing were reported
by Bloom and Bjorkland'3 and Jensen and Hellwarth®), both partics using CS, as the

nonlincar medium.

THEORETICAL FORMALISM

The ficlds involved in the interaction can be described as planc waves using(d):

E(r.t)= —;—{A,(r, yexpli(kr —wr)] + c.c.} 4.2)

where &; is the complex propagation vector, r; is the distance along &, and c.c. denotes
the complex conjugate. 4, can be described as

k =k (k +ia/2) (4.3)

-

where &, is a unit vector in the direction of propagation of E, « is the intensity

!
. o . . . : naw
absorption coefficicnt in the medium at the frequency @ and & = —,
-

The induced nonlincar polarisauon can similarly be writtien as

PNI'(r,t)=%{P(r)cxpl—ia)thc.c.} (4.4)

Where,

P(r), = %eog{xfli}(—w.w.w.—w)EA,(rl)’A2(r2)kA,°(r_,)l cxp[ir.(kl +ky —k, )]}
(4.5)

By substiwting for ™ in the inhomogenous wave equation,
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)k S
‘ =41, P (4.0)

VE - pt,e

and applying the slowly varving cavelope approximation (SVEA) i.c.,

kA >> kﬂ >> ()—A—
) aJ: AR

+.7

it is possible 1o solve for the ficld amplitudes A, and A, which represent the new
"signal” beam and the probe beam respectively. By standard techniques, the following
equations arc obtained,

4

=iQA, exp(-az)
dz s CXP (4.8)

.

dA; . .
d; =iQA, exp(Qz) (4.9)

The coupling constant QQ is given by

-3w |
Q=—x"4,(0) (L)exp[——aL ]
3en MOV 2 (4.10)

where n is the complex index of refraction and L = (—ééﬂ where L is the sample
-

thickness.

Using the boundary conditions A,(L)=0 ( no phase conjugate wave initially ) and
A;(0)= A, ( the initial value of the probe field ), the solutions of equations 4.8 and
4.9 are(9),

2iQA, sin|H(Z - L) 2]exp(-aZ / 2)

A(2)= 411
{2 asin(HL / 2)+ Hcos(HL / 2) @1D
~A;{asin[H(Z-L)/2]-Hcos{H(Z - L)/ 2 azl?
p(z)= ZalasinlH(Z - L) 12)- Heol H(Z - L)/ 2] expla2/2) - )
asin(HL/2)+ Hcos(HL/ 2)
with,
H=[40f - a]"” (4.13)
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[he phase conjugate retlectnviy s detined as the ratio ot the mtensity ot the generated

stgnal beam o that ot the probe beam. [tis given by,

N " = " 2
oo .4:(0)| | _20sinuir2) | i
ALO)]  |asin(HL 1 2) + HeostHLT 2)|
In the hnut ot low reflectivity,
)’ :
Rzl—c—l,[l—cxp(—ul.)l (4.15)
e

The third order susceptibility, y'", is related to the retlectivity, R throughtS. 0.7)

3 acin*e,aVR

= 4.16
3INT(1-T) (@10)

where is a the hincar absorption of the sample. and T is the transmission through it
EXPERIMENT

Phase conjugation is only one of the many different geometrical configurations
for DFWM. Another arrangement that is commonly used is called the “folded boxcar”
configuration.. 9 It was the onc used in this study and is shown in figure 4.2. It
consists of two pump hcams that overlap and interfere in the sample o produce an
intensity modulation that is subsequently detected by a probe beam. This intensity
modulation can affect the sample n many different ways : it can result in a refractive
index modulation, a populatior. odulation, absorptive index modulation eic. The
modulation can be visualised as a diffraction grating within the sample. i.c.. the pump
beams "write"” a grating. "Reading” this grating can give information on different
physical propertics of the medium. This is done by the weak probe beam. When the
probe beam is incident on the grating it diffracts in a new direction giving risc to the
signal beam. The signal beam is detected by a calibrated photodiode/lock-in-amplificr
(LIA) combination. The LIA is triggered by a mechanical chopper in one of the incident
bcam paths.
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Aulocorrelator

Yag ] Dye C.D.

(1) €2) A' |
. Diffracted Signal \ \ - %
N N /

Sample

Figure 4.2 : DFWM using the "folded boxcar” configuration. (C.D. : Cavity
Dumper)

It is now usual to talk about the diffraction efficiency which is defined in the same
manner as the phase conjugate reflectivity.

The rclationship between y*

and the diffracuon efficicncy 77 is given by

2.2
3 _ &’n eoaﬁ

= 4.17
30INT(1-T) @17

Thus, in order to determine the third order susceptibility of a particular sample
one need only measure the ratio of the energy of the dilfracted beam to that of the probe
beam. It is possible to separate out the different tensorial components of ¥ by
varying the polarisations for the pump and probe beams. By introducing a time delay
between the probe beam and either of the two pump beams it is possible to determine
the relaxation time associated with the grating and hence the decay time of the physical
property that was modulated by the interference pattern of the pump beams.

The laser system used in this study was a cw mode locked Nd** doped YAG
laser operating at a repetition rate of 100MHz. The output of the laser was frequency
doubled and then used to synchronously pump a dyc laser. The dye used was
Rhodamine 6G which provided a tunability {rom 560 - 610nm. The output from the
dve laser was fed into a cavity dumper in order to reduce the repetition rate. It was
possiblc 1o vary the repetition rate from 100MHz down 10 about 40KHz. The width of
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the dyve faser pulse was measured by auwtocorrefation techniques usimg a0 second
harmonic generating crysial and tound to be =3ps. A cross correlation ot the two pump
beams was taken at the sample to ensure that they arrived at that point simultancously.
The delay of the probe beam was then scanned to find which setting produced the

maximum signal.

Even at the lowest repention rate of 40 KHz the only sample that it was possible

10 do measurements on was a S0A gold colloid dissolved in acctone.

The sample was examined at a range of different repetitton rates at a wavelength
of S80nm. The concentration was the same in all cases. The results are ploted in figure
4.3. The background at 7 <0 1s just scawer from the chopped beam that is collected by
the signal detector. This is verificd by blocking the other two incident beams. From the
figure it can be seen that as the repetition rate s increased, the signal decays with a
continuously slower relaxation time. This is indicative of a thermal build-up in the
solvent due to absorption of ¢nergy by the solute. For the water soluble colloids. the
thermal build is more drastic making it impossible to perform any mcaningful time

resolved experiments, cven at the lowest repeution rate of the laser.

When all the three input beams are time coincident at the sample, the magnitude

. . 2 : .
of the DFWM signal is related to [x”" . It can be determined by measuring the
diffraction cfficicncy of the sample, relative to that of a well charactenised solvent. This

is done to allow for variations in the beam quality. The solvent in this case was CS,

3) (€]
xaxx un

which has a y valuc of 6.8x 107 ¢esu. (19 The wensorial component ¥ refers to
the case when all threce beams are linearly polarised in the same dircction, which

corresponds to the experimental situation.

When the measurements are done relative 1o a reference sample, y'" for the test

material is obtained using the formula.

I acexplad/2)
L AR )

d 4.18)
Ies nys 5 1 - exp(—ad) (

3) — 4
X = Xcs,
where, [ and [ are the diffracton ctliciencies and n and ng are the lincar refractive

indices for the sample and for the reference matenial, CS,, respectively, and « is the

lincar absomption cocfficicnt of the sample.
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RESULTS OBTAINED

It1s possible to examine the relauonship between the absorption coctficient and
suseeptibility by performing the expertment at a range ot difterent wavelengths, The
wavelength was varied from 562-606nm. and the results obtained are shown an Table
4.1

Wavelength (nm) Absorprion Coefficient 7 "( v )
(cm)
562 50.19 1.62x10™"
569 46.04 1.29x 107"
575 42.72 1.00x 107"
581 39.28 8.67x107
587 36.48 6.95x107%°
594 32.95 4.58x 107
600 30.46 3.53x 107
606 28.21 3.24x107%°

Table 4.1 : Results obtained for wavelength dependent measurements

The results are shown graphically in figure 4.4.

18 x10720

16 /'

14 :

x‘”(xnzV'z)
=
[ )

25 3 3.5 4 45 S 5.5
Absorpuion Cocfficicnt (mm’ h
Figure 44 : 3 Vs Absorption Coefficient, o

Asexpected. 7' is again proportonal to the square of the absorption coetticient. The

tatling off ot ¥ with increasing absorption coetticient, as ohserved in chapter 3. is
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not seen here as the coneentration is well below the threshold value for the Maxwell
Garnett approximation, for the local ficld in the inclusions. to be applicable.
Furthermore, the absorption is changed, not by varying the concentration, but by

varying the wavelength.

The value for y'”, the susceptibility of the inclusions is obtained from the

macroscopic susceptibility using the formula 2.42,

e}
SR AN (4.19)
I’Ifll 5

The results are tabulated in wable 4.2.

e\ (m*v?) f, Pelm*v?)
1.62x107" 1.183 4.02x107"°
1.29x107" 1.138 3.74x107"°
1.00x10°" 1.092 3.42x107"
8.67x107® 1.040 3.60x107'°
6.95x107% 0.990 3.52x107'¢
4.58x107 0.928 3.00x107'¢
3.53x107% 0.877 2.90x 107"
3.24x107% 0.828 3.35x107'°

Table 4.2 : values for the susceptibility of the inclusions, taking into account the
local field factor, f,. The value for p is 2.1x107°.

CONCLUSIONS

These resuits imply that the susceptibility of the inclusions is independent of the
wavelength or the absorption coefficient of the colloidal solution. The only quantity that
varies with wavelength is the local field factor f,. From equation 2.y it can be seen that
the absorption coefficient, &, is directly proportional to the square of the local ficld
factor. Since ¥ is proportional to the local field factor to the fourth power, ( taking p
and ¥ to be constant, within experimental error ), it should also be pre~ortional to

the square of the absorption coefficient. This is the result shown in figure 4.4. The
values obtained for ¥'¥ in the wavelength range 562-606nm are of the same order of

magnitude as thosc obtained by Hache et al. at resonance.(11- 12. 13) The reason for
this, as explained in chapter 3, lies in the value of the local ficld factor and the method

that is used to determine it
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Fhe vatues i the above table e absolute <inces s eyvpenmental
arrangement. there is no way of detertmining the sign ot 7 Ttis also not possible to
say what contribution of the diffracted signal comes from the real part of the
susceptibility and what contnibution comes from the imaginary part. The local ticld
factor £, at these wavelengths has real and imaginary parts of equal magnuude. both
heing postive. This informauon is, however, redundant since the magniudes ot the
real and imaginary parts of the macroscopic susceptthility are unknown. This means
that the relative magnitudes of the real and imaginary parts of the suscepubility of the
inclusions also remains unknown. The only thing that can be said is that the real part of
the susceptibility 1s probably not neghigible. This was the case in Chapter 3 ( e, the
real part of the suscepubility was neghgible Ywhere the expertments were being
performed very close to the surface plasmon resonance trequency. As explained in
Chapter 3. the further away trom resonance that the experiments are performed, the

greater should be the relatve contribution of the real part of the suscepubility.

The change in the DFWM signal as a tuncuon of ume delay of the probe heam
gives the decay of the grating and hence the time response of the optical nonlincarity.
The expeniments were all performed at a repetition rate of 286 Hz. The response time in
cach case, which is a higher order autocorrelation of the laser pulses convoluted with
the material response, was found to be shorter than the intensity autocorrelation width,
indicating that the experimental resolution is limited by the laser pulse width. The only
information to be gleaned from this experiment, theretore, is that the lifetime of the
excited state in the resonant two level system is ar most Sps. This result is consistent
with measurements performed by Hache ez al, (11 12.13) Bloemer er al(1%) and Heilweil
and Hochstrasser.(13) A similar result was found by vang er al for Copper nanocluster

colloidal solutions.(16)

The retaxation processces in a resonant two level svstem are usually desenbed by
a sccond parameter, T, along with the lifcume of the excued state, 7T, also known as
the longitudinal relaxation time. The parameter 7, is known as the transverse relaxation
ume or the phase relaxation ume . It represcnts the decay of the coherence between the
two levels. By an appropriate arrangement it is possible to determine T, from the above
DFWM experiment as well. However, T, generally lies in the fsec time regime and so,
using coherent 5 psec pulses would give very litde information about it. The following
chapter desenibes a novel technique for determining 77, using incoherent light,
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CHAPTER 5

DEGENERATE FOUR WAVE MIXING USING INCOHERENT

In order to understand the dynamical behaviour of light-matter interaction, it is
very important Lo study the relaxation processes associated with the excited states of
materials. In many cases of interest., especially in condensed matter, these relaxation
processes take place on a subpicosecond or femtosccond timescale. In transient
spectroscopy using coherent light, the time resolution of the experiment is limited by
the pulse width of the exciting radiation.(}. 2) Thus in order to probe the dynamical
behaviour of such materials effectively it is essential to have access to ultrafast lasers.
To this end, a lot of effort has been devoted to obtaining short pulse lasers and with
CPM dye lasers, pulses with widths of less than 100 fs have been obtained. Even
shorter pulses, with pulse widths of 6 fs have been gencrated by using a pulse
compression technique.(3: 4) There are, however, several problems associated with
using such short pulses. Firstly, the optics required to generate or compress ultra short
pulses are complicated and prohibitively expensive. Also, as there are not very many
suitable combinations of laser dye/saturable absorber, ultra short pulscs can only be
gencrated in a very limited wavelength regime. Finally, ¢ven if one were able to
succeed in getting a short ecnough pulse at a suitable wavelength, there are further
problems associated with the dispersion of the pulse as it traverses through the optics of
the experiments.

Onec solution 1o this problem is to perform the experiments in the frequency
domain. In 1978 Yajima et al G- 6) proposed resonant Rayleigh-type mixing
spectroscopy for the measurcment of the longitudinal relaxation time, 7,, and the
homogenous transverse rclaxation time, 75, and the relaxation times in some materials
have actually been measured.(7) However in this case the analysis of the results is
extremely complex and can lcad to ambiguities in the determination of these times.

Prompted hy these difficultics, in 1984, Morita er a/ (8) and Beach and
Hartmann (9 independently came up with a new spectsoscopic technique that utilises
temporally incoherent light to determine ultrafast relaxation times. Traditonally optical
coherent experiments have always been performed with coherent laser light. While this
may be essental for experiments such as self induced transparency, it is not a universal

requirement. Indeed., not only can optical coherent transients be generated with an
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mcoherent ight source. there are decided advantages i doimg so. Opucal anstions
can only be induced within the bandwidth of the exciation source. For a laser
ascillating . at most, a tew well delined modes. this means that only a small fruction
ol the atoms or molecules within the resonance line participate in an experiment. This
problem can be overcome by performing the experiment using a broadband incoherent
hight source which also provides ultrahigh tume resoluton. The basis of this method 1s
that the signal hight generated or modulated by nonlinear optical eftects consists of a
correlation of the maternial response and the input tield and. as such. is dependent on the
corrclation ume of the pulse instead of its width. Temporally incoherent light has a wide
spectral “vidih, Av, and a correspondingly short correlation ime determined by 1/Av,
which is much shorter than its  emporal width. This kind of light appears as a single
pulsc of duration t_ in an autocorrelation experiment 19 and is therctore expected 10
play the same role as a short pulse in experiments utilising the correlation technique.
This fact has been verificd experimentally in several situations, including Raman
spectroscopy, {11 12, 17.19) for measuring vibrational relaxation times, and Degenerate
four wave mixing (DFWM) (3-19) photon cchoes ¥+ 20) and pump and probe
spectroscopy (21)-for measuring phase relaxation times and cxcited state lifetimes of
nonlincar materials. This chapter focuses on the measurement of the dephasing time of
colloidal gold solutions by DFWM spectroscopy. In the self diffraction configuration,
two tcmporally incoherent light beams with wave vectors Ki and Ez. originating from a
single beam at frequency  are made to overlap in a nonlincar sample.(2) Due to the
third order nonlincarity of the material, two new output beams are generated at the same
frequency but in the directions 1\73 = 2/22 —l:, and k, = 2L7, - I; Even if the pulse width
of the light is much longer than either T, or T,, the correlaton trace, i.c., the diffracted
light intensity as a function of delay ume. 7. between the two beams. decays
cxponentially with a time dependent on 7. provided that the coherence time of the
pulse. 7. is less than 7,.8) This fact is extremely useful because it is far casier to
prepare an incoherent light source with a short correlation time 7, than to produce an
ultrashort pulsc with the same duration, especially in the range less than 1 ps. In an
extreme case, even ¢w light, which has an infinite duration, is capable of providing fs
time resolution provided it has the adequate spectral width. In the event that 7. is not

very short, the resolution of the experiment is limited on it.
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THEORETICAL BACKGROUND

The electrice tields of the incoherent light beams involved in the interaction can

he described as )

E(r.) = 5(1 - ’—I—'—C)cxp(——iwr +1'k../’) +c.c. (5.1)
N

with,

()= e(1)R(1) | (5.2)

where & is the propagation vector, 7 is a unit vector in the direction of &, c.c. denotes
the complex conjugate, £(r) is a normal function and R(r) is a complex random

function representing a stochastic stationary Gaussian process, which is how the
incohcrent beam is represenicd.

For such a function,

(R'(t)R(t + r)) = f(7) (5.3)
(ROR(+ 1)) =(R (R (1+ 1)) =0 (5.4)
(R'())=(R(@®))=0 (5.5)

where f(t) is the correlation function.

The total electric ficld incident on the matenal is a superposition of the two

fields with wave vectors ki and Ez where the ficld with wave vector k» is temporally
delayed by 7 relative to the other. The total field can be written in the form

E(F,t)=E +E, = {§(r+ T—ﬁi)cxp(—iw(t-f- r)+i/§,.7)+
v

n.r

?,‘(t———-)cxp(—iwt+i@.?)}+c.c. (5.6)
v
The relaxation processes in a resonant two level system are usually described by

the two paramecters, the longitudinal relaxation ume, 7, representing the decay of the

population difference and the transverse relaxauon time. 7T, | representing the decay of
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the coherence between the twa devels, It there s a distbution o ransiion frequeneiens

between the levels the systemoas considered o he mhomogenously broadened

The output hight ficld at the frequeney, @, ma tour wiave mixing process s

- AR BY
proportionad w the third order induced polansation =~ which has the torm,

/hu(,?-,) = "(,"])U\l)( ST AR IR (N 7)
with,
P ) = N dwgt o (Fow,)g(w,) (5.8)

i

where N is the atomic number density, the subscapts ¢ and b denote lower and upper
levels, respectively, u, is the electnic dipole matrix element of the transiton between
the two levels, and g(w, ) is the distnbution tunction of the transition frequency, @,
characterising the inhomogenous broadening. g, (.. w,) s the third arder, off-
diagonal density matrix clement. It contains tour components at the wave vectors A-',.
k}, k, =2I:3 —l:,.;md k, =ZE, —I:I. Since the experiment involves detecting and
measuring the signal in the direction k.. it is only necessary to consider the &,

- A0
component of ;..

This is given by the cquation,®)

[)},j’( _-,) = —'2:';)‘0‘[';—1} cxp(if,.f + iwr) X
1

{ 7 T,

jdr, j dr, jd:‘{g(z,):(,:)g'(:‘ + r)cxp[~i(m,, —w)t, -1, -1, +l.‘)l

Py - - -

+E()E7 (62 + T)E(n ) exp-i( @y — @)1, ~ 1, +1, - n)]}

chp[-y,(t, ~0)=7Y,(t, -0, +1, - l‘)] (5.9)

where v, =T7'. ¥, =T, p™ is the thermal equilibrium value of the population

P 7)

difference ol the two levels, 1, =1- ts the reduced time assuming that

nyo=n,=nand U, =, = /.
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‘The output light intensity, which is the quanuty that is actually experimentally
measured is proportional to |P‘3’(F,t)l.. However, because of the random nature of
P "(F.1), itis necessary to caleulate the statistically averaged value, J(k,), of this

quantity. which can be written as,(8)

J(k.,) <I’”' (r Il> (1

The function F(1) determines the shape of the correlation profile. It can be

(5.1

calculated when a reasonable form is given to the correlation function f(t). f(7) is
usually approximated to be a delta function. Though not absolutely correct, this choice
is reasonable since the rate 1o be measured is much greater than the coherence time of
the pulse. In the event that the coherence time is comparable to or greater than the
quantity being measured, the analysis is unnecessary since the only information that can
be obtained in such a case is, a value for the upper limit of that quantity.

The explicit form of F(t) when g(®, ) is a Gaussian distribution centred at @,

with a width of Sw is shown for two extreme cases in what foliows :(8)

(i) Homogenous broadening case, dw = 0.

(ii) 7>0

F(7)= c,[u +2—(3;4u—)cxp(—2x) =31 = w)exp[-(2 + u)x]

—u
Al u)exp(—Zux)J (5.11)
I —u

(i) T=0

F(O):c,(2+2u+%u2) (5.12)
(i) 7<0

F(7) = ¢, [u+2exp(2x)] (5.13)

(i) Extremely inhomogenous broadening case, d@ — oo

(i) >0
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Y21 ) expl-<ba)+ 32(1 —u)cxp| -(2 4 u).n|+>~'u' expl-2ux)

Hr)=cju+ ;
b= (2~-u)
(1
() r=4
FO) = e (0 + ) (5.15)
(1.011) T-20
F(T)=c,u (5.10)
where,
D'
o = (5.17)
17
and
c —_____"2”03 (5.18)
P 8viw '
u= Il. x = 7,7 and D is a positive constant proportional to the spectral density of the
1)
light.

COMPARISON WITH SIMILAR EXPERIMENTS USING SHORT
PULSES

It is instructive. at this stage, 1o compare the signal behaviour in this case to that
in a conventional, short pulse. two beam sclf diffraction experiment, hereafter referred
to as short pulsc DFWM. The similanity between the processes lies in the fact that both
profiles reflect the relaxation processes governed dominantly by the phase relaxation
time T,. There are, however, three main differences.

(1) The correlation traces in this experiment do not necessarily decay as single
cxponentials, while those of short pulse DFWM experiments always decay single

: . l
exponenually at a rate proportional to T
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t) The present correlation profiles have non zero values @t T=z2oo while no

hackground exists in the short pulse DFWM case.

(111) In this experiment the correlation profiles at 7<) grow up with increasing 7 in
the homogenous broadening case. while those in the short pulse DFWM case are

alwavs zeroat 7<),

I'rom (1) it can be scen that the profile from such an experiment, thus, does not
necessarily give us one of the relaxation umes 7, and 7, in as unambiguous a manner
as the usual self diffraction experiments. I, however, T, >> T, the profiles represent a
single exponential decay with the rates 275" and 477" for the homogenous and
extremely inhomogenous cases, respectively. These rates are consistent with those in
the short pulse case and T, can be uniquely determined. In condensed matter, such as
singlet-singlet transitions of dye malecules. interband transitions of semiconductors
cte., T, 1s generally very short and often falls far below 1ps. In these transitions. the
populaton relaxation time T, is often much longer than T,. Therefore, in these cascs
the present method is a powerful ool for determining 7,.

In the event that 7, is not much longer than T, the present method cannot
determine the relaxation time 7, definitely. However, even in the worst case, it is
possible to determine T, within the error factors of 1.5 and 2.7 in the homogenous and

extremely inhomogenous broadening cases. respectively.(®)

EXPERIMENTAL SET-UP

The experimental sct-up, for measunng 7,. is shown in figure S.1. The PRA
dyc laser was pumped by a PRA Nitrogen laser and emitted S00ps pulses with energics
of 30 - 40 wJ at a repetition rate of 1 - S Hz. The dye used was Coumarin 485.

Diftracted
Y4 : Signal .
~— - )
/ I
Nitogen Pumped N .
Dye Laser D Sample '
-

50 : 50 Beam

; Motorised Delay Line
Splitter t clay Line

Figure 5.1 @ Self diffraction contiguration 1or degenerate four wave mixing.
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Fhe output beam was divided into two patis usine a0 20050 heam spher. Adier
passing the two beams through vanable and fixed delay hnes, they were recombined i
the sample (thickness 0.1 mm) using a 20 cm lens. The delay time T between the beams

was changed by a stepping motor.

The spectral widih of the emitted radsation was inereased by replacing the
diffraction grating in the dve laser oscillaor cavity with a mirror 71 Under these
conditons the bandwidth was found to be 1.5 nim with a cenue wavelength of 22nm.

This corresponds o a coherence time of 86.5(s.

Figure 5.2 shows the results of the bandwidth measurement. The experiment
was performed by passing the beam through a monochromator and monitoring its

cnergy at the exit slitas a funcuon of the wavelength selected.

l [+
o
o
o
o
0.8
:‘; o o
=
= o
= 0.6 °
o
é o
- [
3 04 o
= o
o o ©
o
0.2 R o
o o
o oo
o
oo°° OOOOOO
0 -
S(X) S10 S20 S30 S40 S50

Waveleneth (nm)

Figure 5.2 : Output intensity Vs A Jor measunng the bandwidth of the beam
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The samples studied were

SAMPLE AVERAGE DIAMETER (A)
0 17
C 50
p 52
S 184
0 365
M 392
N 395

RESULTS OBTAINED AND_CONCLUSIONS ON THE
MEASUREMENT OF THE DEPHASING TIME

The corrclation profiles for three of the samples, C, S and M are shown in
figures 5.3, 5.4 and 5.5, respectively. These three samples reflect the range of sizes
used in this study.
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Figure 5.3 : Sample C, Diffracted intensity Vs delay time.
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IYigure 5.5 : Sample M, Diffracted intensity Vs delay time.

The experiment was also performed on a dye solution of Rhodamine B, as a
reterence material, known 1o have a sub-ps phase relaxation time.(23) The result is

shown in figurc 5.6.
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Figure 5.6 : Rhodamine B, Diffracted Intensity Vs delay ume.

From all the figures, 5.3 - 5.6, it can be scen that the correlation trace is
symmetric about the zcro delay position. The background signal at 7 =0 is also
evident. The signal to noisc ratio in this region is quite low, hence the apparent
fluctuations.

The fact of the correlation trace being symmetric implies that the relaxation time
is faster than the coherence time of the pulse, i.c. the resolution of the experiment. The
obscrved signal, therefore gives a correlation profile |G( 1')]2 of the incident incoherent
light where G(7) = exp(—|1{/ 7,) is the autocorrelation function of the incident field. In
such cases, however, 1t is stll possible to measure 7, by monitoring both the diffracted
beams simultancously and mecasuring the time lag between them. For homogencously
broadenced systems the two traces should completely overlap. For extremely
inhomogenous systems, however, the two traces will be separated in time.(16. 17. 19,
24) This time corresponds to the phase relaxation time. Depending on the degree of the

inhomogcnicty, however, this time will vary and is, thus, not a completely accurate
way of determining T,.

Nevertheless, the experiment was performed and it was found that the two

races overlapped completely. This could mean one of two things :

(i) The materials can be described as homogenous systems. From Chapter 3., this is

known to he untrue.
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() The materials can be deseribed as inhomogenous svstems but with o phase
relaxauon tme shorter than that which can be measured using the delay line. The defay
line moves in 2.5 pum steps and, since it is a double pass line, this corresponds o a tme
delay of 17fs. This. then, is the ultimate resolution of the experiment. Thus, even it the
materials are extremely inhomogenously broadened but have a phase relaxaton tme ot

the order ot 20 fs, the two correlation traces will not be separated in tme.

Point (1) 1s aken o be the correct interpretation of the results as 1t is consistent
with the tindings of Chapter 3. It is also consistent with theoretical caleulations done by

Flytzanis ¢r al (25, 20)

MEASUREMENT OF THE MAGNITUDE OF THE NONLINEAR
SUSCEPTIBILITY

By measuring the magnitude of the diffracted signal. when both the beams are
ume coincident on the sample, it is possible to determine the absolute value ol the

nonlincar susceptibility ¥'", using equation 4.17 of chapter 4.

3 8C‘”-an‘/ﬁ (5.19)
3wINT(1-T)

The diffraction cfficiency is given by the rauo of the diffracted signal to that of one of
the pump beams.

Table 5.2 displays the results of the calculations, including the results obtained
for the suscepubility of the inclusions using the formula 2,42,
LT
IRY} /

P . a— (5.20)
/’Ifll fr
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! ‘ . Abs. Coelf. 3y, 2y, Gy 2y
‘ Sample Size (A) (cm_') (V) fi X7V
l N 395 221.5 3.23x107" 1.074 3.31x107"
l M 392 135.6 1.15x107" 1.064 1.98x 107"

] O | 365 125.3 1.13x1077 1028 | 2.34x107" |
R T 1538 | 1.90x10™ | 1330 | 1.48x107 |
| p 52 2533 | 7.03x10™° | 1003 | 7.86x107"
l C 50 50.7 4.42x10° | 1133 1.72x 107"

] Q 47 451.1 4.95x107" 1 1.118 2.20x107"°

Table 5.2 : Values for the macroscopic susceptibility and the susceptibility of the
inclusions, obtained using incoherent light.

1 again shows the familiar square dependence on the absorption coefficicnt.

This is shown graphically in figure 5.7. The values for 7

are of the same order of
magnitude as those measured by Hache et al.(27. 28, 29) At first this scems surprising in
light of the arguments of Chapter 3. However, bearing in mind that the experiment
measures an absolute value for ¥, ( as opposed to a comparative value ) there is
scope for error in the measurement, especially in the determination of the intensity. The
results obtained could be improved upon by performing the experiment relative to a
well characterised sample, such as CS, to allow for variations in the beam quality.
This, however, was not done as the results were only out by a factor of 2-4, which, in
nonlinear optics is generally considered a reasonable error. One conclusion that can be
drawn from these results is that the diffracted signal obtained is from a truly electronic
effect and not from a thermal grating. The logic behind this conclusion is that if a
thermal grating were contributing to the signal, the diffraction efficiency obtained
would be orders of magnitude higher.
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Figure 8.7 1 " Vs Absorption coetticient

The local field factor, squared, J,, ata wavelength of 522nm is mostly real and
negative implying that the macroscopic susceptibility ¥ . and the susceptibility of the
inclusions y'", have different signs. However, in this expenimental contiguration, as

in short pulsc DFWM, it is not possible to determine the sign ot the susceptibility.
CONCLUSION

The only conclusions to be drawn from this chapter then are that the samples
have a phase relaxation time of the order of or taster than 20 tsec and that the
susceptibility of the inclusions is = 2x107m V' ln order 10 determine what
mechanisms contribute to the value obtained for ¥, it s essenual o know its sign and,
as accurately as possible, its response ume. The results obtained from previous
chapters and this chapter, though good, are not conclusive and theretore, it 1S necessary
to pertorm turther experiments o evaluate the sign and the temporal response ot .
The tollowing chapter describes an experiment that measures the detlection of a beam,
due to the optical Kerr effect. passing through a nonlincar material on which an intense
pump beam is incident, as a function of time delay between the probing and the
pumping hbcams. The laser used has a fsec pulse width and the wemporal resolution is
theretore better than that obtained in Chapter 4. [t is also possible to determine, from

the expeniment, the sign of the nonlincanty.
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CHAPTER 6

ULTRAFAST BEAM DEFLECTION METHOD 1FOR ‘THI:
MEASUREMENT O THE TRANSIENT REFRACTIVE INDEN Ol
MATERIALS

Numerous effects such as the optical Kerr effect.! interteromerry - 3 and
beam deflection methods,™ S can be utilised for the measurement of the nonlinear
index of refraction, ., in materials. The first two methods allow ume resolution while
the last, being a single beam method. only permits the determination of the magnitude
of n, and provides no information on the dynamics of the nonlincar interaction. If.
however, a second beam 1s used in an experiment that measurces beam deflection or
distortion, it is possible to actually resolve the interaction in ume. Based on this idea.
Albrecht er al '0) devised an ultrafast beam deflection technigue for measuring the
induced change of the refracuve index of a nonlinear matenial that offers simplicity and

sensitivity, as well as time resolution on a {s timescale.

The principle of the experiment is depicted in figure 6.1. A weak probe pulse is
incident, normally, on a sample placed behind an aperture. At the same time an intense
pump pulsc is incident on the same point, at an angle a with respect to the probe. The
aperture ensures a detinite, nearly rectangular spatial intensity profile and an accurate
overlapping of both beams at the entrance of the sample. The presence of the pump
pulse induces a refractive index change in the sample which consequently results in the
probe beam being detlected by an angle 6. The extent of the deflection is a measure of
the induced index change and 1ts decay, as a funcuon ol delay ume between the pump
and probe beams, gives information on the dynamics ot the materal. The detlectuon of

the probe 1s measured by a diode array.
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Figure 6.1 : Schematic diagram of the experimental set-up for measuring the
transicnt nonlinear refractve index of materials.

The region of the sample irradiated by the pump has a resultant refractive index
given by ny + An, where n, is the refractive index of the sample in the absence of the

pump beam and A4n is the index change induced by it. The change in refractive index is
related to the nonlinear index of refraction, n, through the equation:

where 1 is the intensity of the pump beam.

It is possible to rclate n, to the deflection of the probe bcam by using Snelis

law.

Figure 6.2 : Geometrical construction showing the relationship between An and
the deflection angle 0.

In region 1, the probe beam travels through a medium of refractive index given

by n, + An with a velocity V = . The total distance travelled is given by duana

n, + An

dtana(nn +4n).
-

and the ume uaken is, therefore, (=
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Inrezion 20 the probe beam travets through a medium of retractnv e mdes s

: ¢ ‘ Jran a
with a velocuy — I ume 7 it ravels a distnce ————-n, 4 .3y,
n, ",

) . An .
From figure 2. thus, tand =-—una. When 0 =0, wnt — s ¢ and henee
1"

W el

An
sint = -—jan«a th. )
”H

which is the same as the result obtained by Albrecht er af 1)

‘The greater the deflecuon of the probe beam. the greater will be the resolution of
the experiment. To achieve high deflection angles « is chosen to be close o 86” which
results in an interacuon length of =2mm. When using fs pulses it is very important to
avoid having very long interaction lengths as this results in an increase in the pulse
duration due to group velocity dispersion in the sample. For an interaction length of
2mm, group velocity dispersion 1$ negligible. The diode array that records the
deflection of the probe beam consists ol pixels 25um wide and is at a distance of
=415mm from the aperturc. Theretore a displacement of one pixel corresponds to a
deflection angle of 6x 10™ radians.

The experiment was performed by measuring the deflection of the probe beam
as a function of delay ume between the pump and probe beams. Hence it is possible to
determine, simultancously, both the magnitude and the response time ot the nonlinear
refractive index. It is also possible o determine the sign of #, by comparing the
deflection observed for water with that observed for the sample. The reason that the
comparison was done with water s that it was the solvent used. I the beam through the
sample 1s deflected less than it s for pure water then n, 1s negative, which s intuitively

obvious. This was the case tor all the gold colloids tested.

The laser system consisted of a CPM dye laser ( A = 616nm, pulse width =
75{s ) followed by an Excimer-laser pumped amplifier cascade split by a beam splitter
into a strong pump pulse and a weak probe pulsc. The width of the aperture was
150 um and the diameter of the 2 beams was #X) um. A poladscr was placed in front
of the probe beam, oriented at 45° to the plane of the pump polarisation. An analyser
placed before the detector, thus made possible the separate measurement of the probe

pulse components parallel and perpendicular o the pump pulse.

N4




Figure 0.3 shows a typical resubt obtained. The sample is a 18nm goid coltoid
in de-ionised water. Also shown on the same graph is the deflection for water as a

function of delay time. The polarsadons of the pump and probe beams are parallel.

25
—a— Water
——— sample y
20
o)
g 15
&
=
=t
g 10
E
5
0 ¥ X s
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Figure 6.3 : Sample Y, Probe Beam Deflcction Vs Delay time.

As is evident from the graph, at zero delay, the deflection for sample Y is 17 pixels
while the deflection for pure water is 21 pixels. Taking the value of n, for water to be

3.8x107%cm® / W, we get, for the inclusions :
n, =-71.24x10" em’ [ W,

3
n, and %% are related through the formula 7

3 1(3)

ny =—-5
4 ny€ ¢

6.3)

Using equation 6.3, therefore it is possible to obtain a valuc for ¥ for the
samples measured. The results are tabulated in table 6.1.




Particle Sice

Vol Fracton

Abs. Cadly.

Sumple oA of Particles ctem ) x om0
M 392 2.54x107* 1.994 2397x107°
N2 105 7.05x107 (.O8S S0x10 7
N 1.20x10° 0176 70510
P2 52 2.48x 107 1473 927x10
P 7.13x107 0.945 Sdox1o0
02 17 1.94x 107 2588 7.96x10
0l 2.78x10™ 0.391 3.40x 107
S3 [85 102X 107 I.16Y A90x 107
S2 6.20x 107 ().499 -5 10x 107
Si 2.48x 107 (0.281 -1.70x 1072
Y2 179 4.58x107 0.375 -4.54x 107"
Yl 2.43x 107 (.213 2.27x 107

Fable o.1 : Expenimental Results

Six different samples were measured, with cach sample, except M, being

measured at two or more concentrations. As was observed with previous cxperiments,

again there 1s no relationship between Y

(3)

and particle size. However y

9 is again

found to be proportional to the square of the absorption cocfficient. Figure 6.4 shows

this result.
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As was explained carlier, in chapter 2. the nonlincanity associated with the
actual gold particles is rclated 1o the effective nonlinearity of the solution through :

£3)
l:%) _X (0.4)

I)lflr
Where x!" is the third order susceptibility of the gold particles, p is their volume
fracuon and the factor ¢, is a local ficld factor. At the surface plasmon resonance
frequency itis greater than unity and serves to enhance the effective nonlinearity of the
solution significantly. Off resonance however, f, <1 and y'" is. in fact, diminished.
This can be seen by comparing the results for ¥ at 616nm ( this chapter Ywith thosc

at 522 nm ( Chapters 3 and 5 ).

The field enhancement factor is size dependent in that it depends on the width of
the surface plasmon resonance band, which should in turn be proportional to the size of
the inclusions. However, in all the colloids measured, there were no significant
differences in the widths of the absorption bands, despite the disparity in sizes.

f, is determined using the equation :

= X&)

= 6.5
£ +2¢&, 6-3)

f
Where ¢, (real) is the diclectric constant of the solvent ( dielectric matrix),
and €, (imaginary) is the diclectric constant of the gold particle.

At A=616nm, it turns out to he approximately (0.7, much the same for all the

samplcs.

Using equation 6.4, therefore, ' can be determined. The results are tabulated
in table 6.2.
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Sample l’urmjlr.S'i;'.(‘ PR gm0
(A)
M 392 23.97x107 S7.00x 1070
N2 305 S10x10 7 Tox 07
N1 170510 021810 7
P2 52 A927x 107 1.62x1077
Pl “340x10 2.07x107
2 17 796x10 7 -1 74x 107
0l 3.40x 107 -5.22x107"
S3 185 -3.960x 107 -1.52x 107"
S2 -5 10x 107 -3.23x 107"
S1 -1.70x 107" -2.68x107"
Y2 179 -4.54x 107 -3.84x 107"
Y1 22.27x 107 -3.61x107"

Table 6.2 : x values for the different saples.

3

The values obtained for »!™ are about an order of magnitude lower than those
obtained at resonance. ( A= 522nm ). This is o be expected as the experiment only
measurcs the real part of the cffective suscepubility. In any case, the contribution of the
absorptive ¢ffect (predominantly imaginary) should be significantly reduced at this

wavelength.

The decay of the probe beam deflecton as a tunction of delay tme between the
pump and probe beams yields information on the dynumics of the interaction. The
resolution of the experiment s limited on the pulse width of the laser beam. If the
response time of the nonlincanty is fast on the timescale of the pulse width. then the
decay curve 1s equivalent to the autocorretation profile of the beam. If, on the other
hand, the nonlinearity responds much more slowly, then the deflection decays with a
characteristic time dependent on the energy relaxation ume, 7, of the sample. In the
casc of most of the samples measured, it turns out that T, is in fact fast on the timescale
of the pulse width which is 75 fs. This is cvident by refemming back to figure 6.3. Here.
the only thing that we ¢an do is put an upper limit of 75 fs on T,. Two of the samples
show a slightly diffcrent behaviour. They are the two smallest colloids P and Q of sizes
of the order SOA. In these two cases, the deflection decays on a time scale of about 600

fs. The decay profile for the two samples is shown in figure 6.5 :
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Figure 6.5 : Samples P and Q, Probe Beam Deflection Vs Delay Time.
The reason that these two samples behave differently to the rest is obviously
related their small diameter. When the size of the colloidal particle goes below a
particular threshold level, it starts to bchave like a single molecule and molecular states

come into being. Molecular states characteristically decay on a much slower timescale

than electronic states. (7??7?)
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CHAPTER 7

CONCILUSIONS

Experimental cesults, so far, have never shown such a size dependence. The
rcason being that the intraband contribution (above) m actual metal crystallites 1s not the
sole polarisation mechanism. Two more mechanisms contribute there with quite
diffcerent behaviour that dominates that of the intraband term. One mechanism is the
interband term that anses from the electronic dipole transitions between the filled d band
states and the cmpty confined ones in the s-p band. and gives a contribution that is
negative imaginary but size independent as the d clectrons are unaffected by the

confincment.

The other mechanism 1s the hot electron contribution that resuits from the
modification of the population of the electron states, the Fermi-Dirac distribution,
causcd by the elevation of their temperatures subsequent to the absorption of photons in
the resonant process, but before the heat is released to the lattice of the crystallite; this
leads to a contribution to ¥(3) that is positive imaginary and size independent.

From experiments performed so far, it seems that the dominant contribution to
x(3) comes from the third mechanism and also that even the interband term dominates

the intraband tcrm.
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